- 6. A smooth sphere P of mass m is moving in a straight line with speed u on a smooth horizontal table. Another smooth sphere Q of mass 2m is at rest on the table. The sphere P collides directly with Q. After the collision the direction of motion of P is unchanged. The spheres have the same radii and the coefficient of restitution between P and Q is e. By modelling the spheres as particles,
 - (a) show that the speed of Q immediately after the collision is $\frac{1}{3}(1+e)u$,

(5)

(b) find the range of possible values of e.

(4)

Given that $e = \frac{1}{4}$,

(c) find the loss of kinetic energy in the collision.

(4)

(d) Give one possible form of energy into which the lost kinetic energy has been transformed.

(1)

a)

$$\begin{array}{ccc}
 & & & & & \\
 & & & & & \\
 & & & & & \\
\hline
 & & & & \\
\hline
 & & & & \\
\hline
 & & & & & \\
\hline$$

PCLM

$$mU = mV_p + 2mV_q$$

$$U = V_p + 2V_q$$

Restitution

(1) + (2)

$$\frac{U(1+e)}{3} = \sqrt{a}$$

$$V_{P} = V_{Q} - e_{U}$$

$$V_{P} = \frac{1}{3}U + \frac{1}{3}Ue - Ue$$

$$V_{P} = \frac{1}{3}U - \frac{2}{3}Ue$$

$$V_{p} = \frac{1}{3}U(1-2e)$$

$$V_{\rho} = \frac{1}{2}U(1 - \frac{2}{4}) = \frac{1}{6}U$$
 $V_{\alpha} = \frac{1}{2}U(1 + \frac{1}{4}) = \frac{5U}{12}$

$$= \frac{mu^{2}}{72} + \frac{25}{144}mu^{2}$$

$$= \frac{3mu^{2}}{16}$$

$$= \frac{3mu^{2}}{16}$$

$$= \frac{5mu^{2}}{16}$$

d) Sound energy

Jan 03

- 6. A smooth sphere P of mass 2m is moving in a straight line with speed u on a smooth horizontal table. Another smooth sphere Q of mass m is at rest on the table. The sphere P collides directly with Q. The coefficient of restitution between P and Q is $\frac{1}{3}$. The spheres are modelled as particles.
 - (a) Show that, immediately after the collision, the speeds of P and Q are $\frac{5}{9}u$ and $\frac{8}{9}u$ respectively. (7)

After the collision, Q strikes a fixed vertical wall which is perpendicular to the direction of motion of P and Q. The coefficient of restitution between Q and the wall is e. When P and Q collide again, P is brought to rest.

(b) Find the value of e.

(7)

(c) Explain why there must be a third collision between P and Q.

(1)

- 6. A particle A of mass 2m is moving with speed 2u on a smooth horizontal table. The particle collides directly with a particle B of mass 4m moving with speed u in the same direction as A. The coefficient of restitution between A and B is $\frac{1}{2}$.
 - (a) Show that the speed of B after the collision is $\frac{3}{2}u$.

(6)

(b) Find the speed of A after the collision.

(2)

Subsequently B collides directly with a particle C of mass m which is at rest on the table. The coefficient of restitution between B and C is e. Given that there are no further collisions,

(c) find the range of possible values for e.

(8)

Jun 02

- 6. A small smooth ball A of mass m is moving on a horizontal table with speed u when it collides directly with another small smooth ball B of mass a which is at rest on the table. The balls have the same radius and the coefficient of restitution between the balls is a. The direction of motion of a is reversed as a result of the collision.
 - (a) Find, in terms of e and u. the speeds of A and B immediately after the collision.

(7)

In the subsequent motion B strikes a vertical wall, which is perpendicular to the direction of motion of B, and rebounds. The coefficient of restitution between B and the wall is $\frac{3}{4}$.

Given that there is a second collision between A and B,

(b) find the range of values of e for which the motion described is possible.

(6)

- 7. A uniform sphere A of mass m is moving with speed u on a smooth horizontal table when it collides directly with another uniform sphere B of mass 2m which is at rest on the table. The spheres are of equal radius and the coefficient of restitution between them is e. The direction of motion of A is unchanged by the collision.
 - (a) Find the speeds of A and B immediately after the collision.

(7)

(b) Find the range of possible values of e.

(2)

After being struck by A, the sphere B collides directly with another sphere C, of mass 4m and of the same size as B. The sphere C is at rest on the table immediately before being struck by B. The coefficient of restitution between B and C is also e.

(c) Show that, after B has struck C, there will be a further collision between A and B.

(6)

HWK

The questions above