

A particle *P* is projected from a point *A* with speed 32 m s⁻¹ at an angle of elevation α , where $\sin \alpha = \frac{3}{5}$. The point *O* is on horizontal ground, with *O* vertically below *A* and *OA* = 20 m. The particle *P* moves freely under gravity and passes through a point *B*, which is 16 m above ground, before reaching the ground at the point *C*, as shown in Figure 4.

Calculate

(a) the time of the flight from A to C ,	(5)
(<i>b</i>) the distance <i>OC</i> ,	(3)
(c) the speed of P at B ,	(4)
(d) the angle that the velocity of P at B makes with the horizontal.	(3)

- 4. A darts player throws darts at a dart board which hangs vertically. The motion of a dart is modelled as that of a particle moving freely under gravity. The darts move in a vertical plane which is perpendicular to the plane of the dart board. A dart is thrown horizontally with speed 12.6 m s^{-1} . It hits the board at a point which is 10 cm below the level from which it was thrown.
 - (a) Find the horizontal distance from the point where the dart was thrown to the dart board.

(4)

The darts player moves his position. He now throws a dart from a point which is at a horizontal distance of 2.5 m from the board. He throws the dart at an angle of elevation α to the horizontal, where $\tan \alpha = \frac{7}{24}$. This dart hits the board at a point which is at the same level as the point from which it was thrown.

(b) Find the speed with which the dart is thrown.

(6)

Q2