Completing the Square

Consider
$$(x + a)(x + a)$$

$$= x^2 + ax + ax + a^2$$

$$= x^2 + 2ax + a^2$$

Given 9 quadratic expression such as $x^2 + 6x + 10$

we wish to write it in the form

$$(x+a)^2+6$$

where a, b are constants

$$= (x+3)^2 + 10 - 9$$

$$= \left(x + 3 \right)^2 + 1$$

but (x+3)2

= 22+62+9

The number in the bracket (+3) is half of the number of x in the expression (+6) However, this introduces an exbra term (+3)² which we then need to subtract to ensure the two expressions are equal

Example:

1)
$$x^{2} + 4x - 3 = (x+2)^{2} - 3 - 4$$

= $(x+2)^{2} - 7$

3)
$$x^{2} + 5x + 8 = (x + \xi)^{2} + 8 - \xi^{2}$$

$$= (x + \xi)^{2} + \xi^{2} + \xi^{2} + \xi^{2}$$

$$= (x + \xi)^{2} + \xi^{2}$$

$$= (x + \xi)^{2} + \xi^{2}$$

Exercise Complete the square

$$x^{2} + 2x + 7 = (x+i)^{2} + 7 - (x+i)^{2} + 6$$

2)
$$x^2 - 8x - 1 = (x - a)^2 - 1 - 16$$

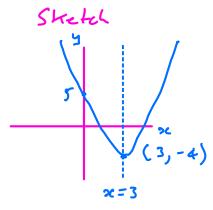
= $(x - a)^2 - 17$

3)
$$x^{2} + 3x + 5 = (x + \frac{3}{2})^{2} + 5 - \frac{9}{4}$$

 $= (x + \frac{3}{2})^{2} + \frac{20}{4} - \frac{9}{4}$
 $= (x + \frac{3}{2})^{2} + \frac{11}{4}$

4)
$$x^{2} - 9x + 10 = \left(x - \frac{9}{2}\right)^{2} + (0 - \frac{8}{4})^{2}$$

$$= \left(x - \frac{9}{2}\right)^{2} + \frac{40}{4} - \frac{8}{4}$$


$$= \left(x - \frac{9}{2}\right)^{2} - \frac{41}{4}$$

Identifying Line of Symmetry and Minimum Point

$$y = x^2 - 6x + 5$$

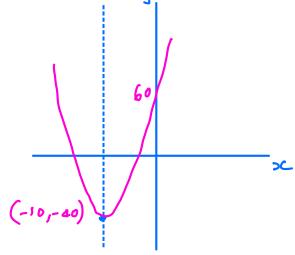
$$y = (x - 3)^2 + 5 - 9$$

$$y = (x - 3)^2 - 4$$

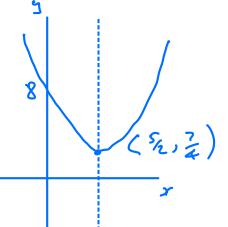
Line of symmetry oc = 3

Minimum Point is (3,-4)

Notice the constant term (-4) indicates the y-coordinate of the minimum point


$$y = x + 20x + 60$$

$$y = (x + 10)^2 + 60 - 100$$


$$y = (x+10)^2 - 40$$

Line of symmetry or = -10

Min point (-10, -40)

$$y = (x - \xi)^2 + \frac{2}{4}$$

Line of symmetry = x=\frac{5}{2}

Min point (\frac{5}{2}, \frac{7}{4})

x= {