1 Write down the lower and upper bounds of each of these values, rounded to the accuracy stated.
a 8 m (1 significant figure)
b 26 kg (2 significant figures)

- 25 min (2 significant figures)
d 85 g (2 significant figures)
e 2.40 m (2 decimal places)
f 0.2 kg (1 decimal place)
g 0.06 s (2 decimal places)
h 300 g (1 significant figure)
i 0.7 m (1 decimal place)
1 366 d (3 significant figures) k 170 weeks (2 significant figures) I 210 g (2 significant figures)
2 Billy has 40 identical marbles. Each marble weighs 65 g (to the nearest gram).
a What is the greatest possible weight of one marble?
b What is the least possible weight of one marble?
c What is the greatest possible weight of all the marbles?
d What is the least possible weight of all the marbles?

3. A field is in the shape of a rectangle.

The length of the field is 340 m , to the nearest metre. The width of the field is 117 m , to the nearest metre.

Calculate the upper bound for the perimeter of the field.
4. The length of a rectangle is 30 cm , correct to 2 significant figures. The width of a rectangle is 18 cm , correct to 2 significant figures.
(a) Write down the upper bound of the width.

$$
18.5
$$ cm

(b) Calculate the upper bound for the area of the rectangle.

$$
\begin{align*}
& 29.5<L<30.5 \tag{2}\\
& 17.5<\omega<18.5 \\
& 30.5 \times 18.5 \\
& =564.25 \\
& =560 \text { to } 2 \mathrm{s.f}
\end{align*}
$$

$$
560
$$

$$
\mathrm{cm}
$$

$$
\text { (Total } 3 \text { marks) }
$$

$$
\begin{aligned}
& 339.5<L<340.5 \\
& 116.5<w<117.5 \\
& \text { Upper Bound fur Perimeter } \\
& 340.5+117.5+340.5+117.5 \\
& 916
\end{aligned}
$$

9. The voltage V of an electronic circuit is given by the formula

$$
V=I R \quad=I=\frac{V}{R}
$$

where I is the current in amps and R is the resistance in ohms.

Given that $\quad V=218$ correct to 3 significant figures,

$$
R=12.6 \text { correct to } 3 \text { significant figures, }
$$

calculate the lower bound of I.

$$
\begin{aligned}
\text { Lower bound for I } & =\frac{V_{\max }}{R_{\max }} \\
=\frac{217.5}{12.65} & =17.194 \\
& =17.2 \text { amps } \\
& \text { to } 3 \text { sit. }
\end{aligned}
$$

*10. $m=\frac{\sqrt{s}}{t}$
$s=3.47$ correct to 2 decimal places.
$t=8.132$ correct to 3 decimal places.
By considering bounds, work out the value of m to a suitable degree of accuracy.

You must show all your working and give a reason for your final answer.

$$
\begin{array}{rl}
3.465 & \leq s<3.475 \\
8.1315 & \leq t<8.1325 \\
\frac{\sqrt{3.465}}{8.1325}<m<\frac{\sqrt{3.425}}{8.1315} \\
0.2289 & m<0.2292 \\
m=0.229 \quad \text { to } 3 \mathrm{s.f}
\end{array}
$$

