Questions

Q1.

Diagram NOT accurately drawn
$P Q R$ and $P T S$ are straight lines.
Angle $P T Q=$ Angle $P S R=90^{\circ}$
$Q T=4 \mathrm{~cm}$
$R S=12 \mathrm{~cm}$
$T S=10 \mathrm{~cm}$
(a) Work out the area of the trapezium $Q R S T$.
(b) Work out the length of $P T$.

Q2.

Diagram NOT
accurately drawn
$A B C D$ and $A E F G$ are mathematically similar trapeziums.
$A E=5 \mathrm{~cm}$
$E F=12 \mathrm{~cm}$
$B C=18 \mathrm{~cm}$
(a) Work out the length of $A B$.
cm

Trapezium AEFG has an area of $36 \mathrm{~cm}^{2}$.
(b) Work out the area of the shaded region.
cm^{2}
(3)

Q3.

Diagram NOT accurately drawn
Quadrilaterals $A B C D$ and $L M N P$ are mathematically similar.
Angle $A=$ angle L
Angle $B=$ angle M
Angle $C=$ angle N
Angle $D=$ angle P
(a) Work out the length of $L P$.
(b) Work out the length of $B C$.

Q4.

Diagram NOT accurately drawn
$A B C$ and $C D E$ are straight lines. $B D$ and $A E$ are parallel.
$B D=12 \mathrm{~cm}, C D=18 \mathrm{~cm}, D E=6 \mathrm{~cm}$.
Work out the length of $A E$.
cm

Q5.

Diagram NOT
accurately drawn
$A B C$ and $A E D$ are straight lines.
$B E$ and $C D$ are parallel.
$B E=1.5 \mathrm{~cm}$.
$C D=6 \mathrm{~cm}$.
$A D=5 \mathrm{~cm}$.
Calculate the length of $E D$.
cm

Triangles ABCand DEFare mathematically similar.
The base, $A B$, of triangle $A B C$ has length $2(x-1) \mathrm{cm}$
The base, $D E$, of triangle $D E F$ has length $\left(x^{2}-1\right) \mathrm{cm}$
The area of triangle $A B C$ is $4 \mathrm{~cm}^{2}$
The area of triangle $D E F$ is $T \mathrm{~cm}^{2}$
Prove that

$$
T=x^{2}+2 x+1
$$

$A B C$ is a triangle.

D is a point on $A B$ and E is a point on $A C$.
$D E$ is parallel to $B C$.
$A D=4 \mathrm{~cm}, D B=6 \mathrm{~cm}, D E=5 \mathrm{~cm}, A E=5.8 \mathrm{~cm}$.
Calculate the perimeter of the trapezium $D B C E$.

Q8.
Steve has a photo and a rectangular piece of card.

Diagram NOT
accurately drawn

The photo is 16 cm by 10 cm .
The card is 30 cm by 15 cm .
Steve cuts the card along the dotted line shown in the diagram below.

Steve throws away the piece of card that is 15 cm by $x \mathrm{~cm}$.
The piece of card he has left is mathematically similar to the photo.
Work out the value of x.

