Transformations
Any 2×2 matrix can represent a transformation in the $x y$-plane

Reflection in x-axis

	$\cdot(x, y)$
	$(x-y)$

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{x}{y}=\binom{x}{-y}
$$

Reflection in y-axis

$$
(-x, y) \quad-(x, y) \quad\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}=\binom{-x}{y}
$$

Reflection in line $y=x$

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{x}{y}=\binom{y}{x}
$$

Reflection in line $y=-x$

$$
\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)\binom{x}{y}=\binom{-9}{-x}
$$

Consider

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{1}{0}=\binom{a}{c} \\
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{0}{1}=\binom{b}{d}
\end{aligned}
$$

So it $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a transformation matrix
the first column indicates the image of $\binom{1}{0}$ the second colum indicates the image of $\binom{0}{1}$

This is particularly useful for rotations Consider a rotation of θ° anti-clockise which is considered the positive direction

Using argument above the transformation matrix for a rotation of θ^{0} ant.-clockwise about origin is given by

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

Find transformation matrices for anti-clockurse rotations for

$$
\begin{aligned}
& 30^{\circ}=\left(\begin{array}{cc}
\cos 30 & -\sin 30 \\
\sin 30 & \cos 30
\end{array}\right)=\left(\begin{array}{cc}
\frac{\sqrt{3}}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right) \\
& 45^{\circ}=\left(\begin{array}{cc}
\cos 45 & -\sin 45 \\
\sin 45 & \cos 45
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) \\
&=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \\
& 60^{\circ}=\left(\begin{array}{cc}
\cos 60 & -\sin 60 \\
\sin 60 & \cos 60
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)
\end{aligned}
$$

Find a transformation matrix for a reflection in the x-axis followed by a rotation of 60° ant-clockwise

Reflect in x-axis

rotate 60° ant. - clockwise

$$
\left(\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)
$$

Composite Reflect fallout by Rotate

9 You are given the matrix $\mathbf{M}=\left(\begin{array}{rr}0.8 & 0.6 \\ 0.6 & -0.8\end{array}\right)$.
(i) Calculate \mathbf{M}^{2}.

You are now given that the matrix \mathbf{M} represents a reflection in a line through the origin.
(ii) Explain how your answer to part (i) relates to this information.
(iii) By investigating the invariant points of the reflection, find the equation of the mirror line.
(iv) Describe fully the transformation represented by the matrix $\mathbf{P}=\left(\begin{array}{rr}0.8 & -0.6 \\ 0.6 & 0.8\end{array}\right)$.
(v) A composite transformation is formed by the transformation represented by \mathbf{P} followed by the transformation represented by \mathbf{M}. Find the single matrix that represents this composite transformation.
(vi) The composite transformation described in part (v) is equivalent to a single reflection. What is the equation of the mirror line of this reflection?
i) $M^{2}=\left(\begin{array}{cc}0.8 & 0.6 \\ 0.6 & -0.8\end{array}\right)\left(\begin{array}{cc}0.8 & 0.6 \\ 0.6 & -0.8\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
ii) Reflecting in the same line twice returns points to initial positions which is why the resultant transformation is the identity
iii)

$$
\begin{aligned}
\left(\begin{array}{cc}
0.8 & 0.6 \\
0.6 & -0.8
\end{array}\right)\binom{x}{y} & =\binom{x}{y} \\
0.8 x+0.6 y & =x \\
0.6 x-0.8 y & =3
\end{aligned}
$$

$\times 5$

$$
\begin{aligned}
& 4 x+3 y=5 x \Rightarrow 3 y=x \text { or } y=\frac{1}{3} x \\
& 3 x-4 y=5 y \Rightarrow 9 y=3 x \text { or } y=\frac{1}{3} x
\end{aligned}
$$

so live is $y=\frac{1}{3} x$
iv) $\quad\left(\begin{array}{cc}0.8 & -0.6 \\ 0.6 & 0.8\end{array}\right)$
rotation aut.-clockvice about $(0,0)$
by $\cos ^{-1}(0.8)$
a bout 36.9°

