Year 10:


Year 11:


## Factors and multiples Flipchart resources $\backslash$ factors multiples.flipchart

| N4 | Use the concepts and vocabulary of prime numbers, factors (divisors), multiples, common factors, <br> common multiples, highest common factor, lowest common multiple, prime factorisation, including using <br> product notation, and the unique factorisation theorem | prime factor decomposition including <br> product of prime factors written in index <br> form |
| :--- | :--- | :--- |

Rounding and bounds: Main teaching here is bounds in calculations
Flipchart resources $\backslash$ Approx estimating and bounds.flipchart

| N15 | Round numbers and measures to an appropriate degree of accuracy (eg to a specified number of decimal places or <br> significant figures); use inequality notation to specify simple error intervals due to truncation or rounding <br> move into upper and lower bounds as challenge |  |
| :--- | :--- | :--- | :--- |
| N16 Apply and interpret limits of accuracy including upper and lower bounds Include bounds in calculations <br> R14 N14 - estimation and approximating  | And bounds from numbers being truncated |  |

## Compound measures: Main teaching here is speed/density and a little pressure....

Flipchart resources\Speed, density.flipchart

| R1 | Use compound units such as speed, rates of pay, unit pricing, density and pressure | including making comparisons |
| :--- | :--- | :--- | :--- |


| A1 | - $a b$ in place of $a \times b$ <br> Use and interpret algebraic notation, including: <br> - $3 y$ in place of $y+y+y$ and $3 x y$ <br> - $a^{2}$ in place of $a \times a$, <br> $a^{3}$ in place of $a \times a \times a$, <br> $a^{2} b$ in place of $a \times a \times b$ <br> - $\frac{a}{b}$ in place of $a \div b$ <br> coefficients written as fractions rather than as decimals brackets | it is expected that answers will be given in their simplest form without an explicit instruction to do so |
| :---: | :---: | :---: |
| N3 | Use conventional notation for priority of operations, including brackets, powers, roots and reciprocals |  |
| A3 | understand and use the concepts and vocabulary of expressions, equations, formulae, identities, inequalities, terms and factors | this will be implicitly and explicitly assessed |
| A4 | Simplify and manipulate algebraic expressions (including those involving surds) by: <br> - collecting like terms <br> - multiplying a single term over a bracket <br> - taking out common factors |  |

## Equations: - solving any and all types of linear equation

Flipchart resources\solving equations.flipchart

| A2 | Substitute numerical values into formulae and expressions, including scientific formulae | unfamiliar formulae will be given in the question |
| :--- | :--- | :--- |
| A17 | Solve linear equations in one unknown algebraically including those with the unknown on both <br> sides of the equation | including use of brackets |

## Angles: This is all angle facts, including parallel lines, polygons and circle theorems

Flipchart resources \angle facts and polygons.flipchart

| G1 | Use conventional terms and notations: <br> points, lines, vertices, edges, planes, parallel lines, perpendicular lines, right angles, polygons, regular polygons <br> and polygons with reflection and/or rotation symmetries <br> Use the standard conventions for labelling and referring to the sides and angles of triangles <br> Draw diagrams from written descriptions |  |
| :--- | :--- | :--- |
| G3 | Apply the properties of: <br> - angles at a point <br> - angles at a point on a straight line <br> Undertically opposite angles | colloquial terms such as Z angles <br> are not acceptable and should <br> not be used |

## Properties of polygons:

G3 $\begin{aligned} & \text { Derive and use the sum of angles in a triangle (e.g. to deduce and use the angle sum in } \\ & \text { any polygon, and to derive properties of regular polygons) }\end{aligned}$ any polygon, and to derive properties of regular polygons)
G4 Derive and apply the properties and definitions of:
special types of quadrilaterals, including square, rectangle, parallelogram, trapezium, kite and rhombus and triangles and other plane figures using appropriate language

Including knowing names and properties of isosceles, equilateral, scalene, right-angled, acute-angled, obtuseangled triangles
including knowing names and using the polygons: pentagon, hexagon, octagon and decagon

## Circle theorems: Flipchart resources\circle theorems.flipchart

Flipchart resources\circle theorems exam questions.flipchart

| G10 | Apply and prove the standard circle theorems concerning <br> angles, radii, tangents and chords and use them to prove <br> related results |
| :--- | :--- |

## including

- angle at centre is equal to twice angle at circumference;
- angle in a semi-circle is $90^{\circ}$;
- angles in the same segment are equal;
- opposite angles in a cyclic quadrilateral sum to $180^{\circ}$;
- tangent at any point on a circle is perpendicular to the radius at that point
- tangents from an external point are equal in length;
- the perpendicular from the centre to a chord bisects the chord;
- alternate segment theorem


## Review and assess term 1

Indices: Flipchart resources \indices (higher).flipchart

| N6 | Use positive integer powers and associated real roots (square, cube and higher) <br> Recognise powers of $2,3,4,5$ <br> Estimate powers and roots of any given positive number | including square numbers up to $15 \times 15$ <br> know that $1000=10^{3}$ and 1 million $=10^{6}$ |
| :--- | :--- | :--- |
| N7 | Calculate with roots, and with integer and fractional indices |  |

## Surds: Flipchart resources\surds.flipchart



## Coordinates and linear graphs:

## Flipchart resources\straight lines.flipchart

## Flipchart resources \Gradients and equations.flipchart

Flipchart resources) (Gradients and equations (higher2).flipchart

| A8 | Work with co-ordinates in all four quadrants |  |
| :--- | :--- | :--- |
| G11 | Solve geometrical problems on co-ordinate axes |  |


| A9 | Plot graphs of equations that correspond to straight line graphs in the co-ordinate plane <br> Use the form $y=m x+c$ to identify parallel lines and perpendicular lines <br> Find the equation of the line through two given points, or through one point with a given gradient |
| :--- | :--- | :--- |
| A10 | Identify and interpret gradients and intercepts of linear functions graphically and algebraically |

## Basic fractions: Review of all four operations with fractions

## Flipchart resources\fractions.flipchart

| N1 | Order positive and negative fractions |  |
| :--- | :--- | :--- |
| N2 | Apply the four operations, including formal written methods, to simple fractions (proper and improper) and mixed numbers - both <br> positive and negative |  |
| N8 | Calculate exactly with fractions |  |

## Basic decimals: Main teaching is converting recurring decimal to a fraction

## Flipchart resources\recurring decimals.flipchart

| N2 | Apply the four operations, including formal written methods, to decimals - both <br> positive and negative <br> Understand and use place value (e.g. when calculating with decimals) | including questions set in context (knowledge of terms used in <br> household finance, for example profit, loss, cost price, selling <br> price, debit, credit and balance, income tax, VAT, interest rate) |
| :--- | :--- | :--- |
| N10 | Work interchangeably with terminating decimals and their corresponding fractions <br> (such as 3.5 and $7 / 2$ or 0.375 and $3 / 8$ ) including ordering <br> Change recurring decimals into their corresponding fractions and vice <br> versa |  |

## Review and assess term 2

## Basic percentages:

Flipchart resources $\backslash p e r c e n t a g e s ~(a l l) . f l i p c h a r t ~$

| R9 | Define percentage as 'number of parts per hundred' <br> Interpret percentages and percentage changes as a fraction or decimal and interpret these multiplicatively <br> Express one quantity as a percentage of another <br> Compare two quantities using percentages <br> Work with percentages greater than $100 \%$ | including interpreting percentage <br> problems using a multiplier |
| :--- | :--- | :--- |
| N12 | Interpret fractions and percentages as operators |  |

## Calculating with percentages: Main teaching is use of percentage multipliers

## Finance resources\Finance - Best buys, percentages \& shopping.pdf

## Finance resources\Ideas for finance activities -

## Best buy, \%, interest etc.pptx

R9 $\quad$ Solve problems involving percentage change, including:
problems may be set in context using a multiplier

- percentage increase / decrease problems
- original value problems
- simple interest, including in financial mathematics
- Percentage multipliers
- Reverse percentages
- Compound interest
- Repeated percentage changes


## Growth and decay

| R16 | Set up, solve and interpret the answers in growth and decay problems, including compound interest | NOT Iterations <br> These are in Year 11 SOW |
| :--- | :--- | :--- |

## Ratio and proportion:

Flipchart resources \Ratio and proportion.flipchart Finance resources\Finance - Ratio.pdf

| N11 | Identify and work with fractions in ratio problems |
| :--- | :--- |
| R3 | Express one quantity as a fraction of another, where the fraction is less than 1 or greater than 1 |


| R4 | Use ratio notation, including reduction to simplest form |  |
| :--- | :--- | :--- |
| R5 | Divide a given quantity into two parts in a given part:part or part:whole ratio <br> Express the division of a quantity into two parts as a ratio <br> Apply ratio to real contexts and problems (such as those involving conversion, comparison, scaling, mixing and <br> concentrations) | including better value or <br> best buy problems |
| R6 | Express a multiplicative relationship between two quantities as a ratio or fraction | Use of the following: <br> If a:b $=\mathrm{c}: \mathrm{d}$ then $\mathrm{a} / \mathrm{b}=\mathrm{c} / \mathrm{d}$ or <br> $\mathrm{a} / \mathrm{c}=\mathrm{b} / \mathrm{d}$ |
| R7 | Understand and use proportion as equality of ratios |  |
| R8 | Relate ratios to fractions and to linear functions |  |
| R10 | Solve problems involving direct and inverse proportion, including graphical and algebraic representations |  |

## Review and assess term 3

## Formulae:

## Flipchart resources\changing the subject.flipchart Finance resources\Finance - KS4 Equations and Formulae.pdf

## Finance resources \Ideas for finance activities - formulae.pptx

A5 $\quad$ Understand and use standard mathematical formulae; rearrange formulae to change the subject

Quadratics: Introduction to quadratics. In this section complete the following:

- Expanding two and three pairs of brackets
- Factorising any quadratic
- Complete the square
- Plotting/drawing quadratic graphs and linking factorising/CTS to the graphs


## Flipchart resources\changing the subject.flipchart

## Flipchart resources\CTS.flipchart

| A4 | Simplify and manipulate algebraic expressions by: <br> - expanding products of two and three binomials <br> - factorising quadratic expressions of the form $\mathrm{x}^{2}+\mathrm{bx}+\mathrm{c}$ including the difference of two squares <br> - simplifying expressions involving sums, products and powers, including the laws of indices |  |
| :--- | :--- | :--- |
| A5 Include factorising non-unitary quadratics |  |  | | Understand and use standard mathematical formulae |
| :--- |
| Rearrange formulae to change the subject including where the subject appears twice |$\quad$| including use of formulae from other |
| :--- |
| subjects in words and using |
| symbols |

## Completing the square: only for finding least/greatest values and not in solving

## Flipchart resources\CTS.flipchart

| A18 <br> Plus <br> part <br> of <br> A11 | Completing the square; only unitary quadratics required. Greatest or least values (turning points/vertex) to be found <br> and then used to sketch graph of quadratic find approximate solutions using a graph | The exam board have lied - <br> they also include non- <br> unitary so give it a go if your <br> class can cope |
| :--- | :--- | :--- | :--- |
| A18 | $\underline{\text { Solve quadratic equations algebraically by factorising, }}$ |  |
| A11 | Identify and interpret roots, intercepts and turning points of quadratic functions graphically; deduce roots <br> algebraically and turning points by completing the square | including the symmetrical property of a <br> quadratic |

## Proof:

## Flipchart resources\Proof.flipchart

| A6 | Know the difference between an equation and an identity <br> Argue mathematically to show algebraic expressions are equivalent, and use algebra to support and <br> construct arguments and proofs | Plenty of work with odds and evens |
| :--- | :--- | :--- |

## Algebraic fractions:

| A4 | Simplify and manipulate algebraic expressions involving algebraic fractions | Add, subtract, multiply and <br> divide, use in solving <br> equations both linear and <br> quadratic and in simplifying <br> fractions by factorising |
| :--- | :--- | :--- |

## Perimeter and area:

Flipchart resources \Perimeter, area and volume.flipchart Finance resources\Finance - KS4 Perimeter and Area.pdf
Finance resources \Ideas for finance activities - perimeter area and volume.pptx

| G12 | Identify properties of the faces, surfaces, edges and vertices of: cubes, cuboids, prisms, cylinders, pyramids, cones and spheres |  |
| :--- | :--- | :--- |
| G17 | Calculate the perimeter of a 2D shapes and composite shapes <br> Find the surface area of pyramids composite shapes |  |
| G16 | Know and apply formulae to calculate area of: <br> - triangles <br> - parallelograms |  |

## Circumference and area:

## Flipchart resources\circles and 3D.flipchart

| G9 | Identify and apply circle definitions and properties, including: centre, radius, chord, diameter, <br> circumference, tangent, arc, sector and segment | Gnow and use the formulae: <br> - Circumference of a circle $=2 \pi r=\pi d$ <br> - Area of a circle $=\pi r^{2}$ |
| :--- | :--- | :--- |
| Calculate the perimeters of 2D shapes including circles and composite shapes <br> Calculate areas of circles and composite shapes <br> Calculate surface area of spheres, cones and composite solids | solutions in terms of m may be asked for |  |
| G18 | $\underline{\text { Calculate arc lengths, angles and areas of sectors of circles }}$ | May be worth teaching density here if time <br> although appears later on in the SOW and could <br> use that as a revision of volume |

## Volume: a great time to practice changing the subject in context

## Flipchart resources\circles and 3D.flipchart

Flipchart resources $\backslash$ Perimeter, area and volume.flipchart

| R12 | Compare lengths, areas and volumes using ratio notation <br> Scale factors <br> Make links to similarity (will be covered in Year 11) | Similar shapes (plus area and volume) is not <br> covered until Year 11 |
| :--- | :--- | :--- |
| G16 | Know and apply the formulae to calculate the volume of cuboids and other right prisms <br> (including cylinders) | including frustums |
| G17 | $\underline{\text { Calculate the volume of spheres, pyramids, cones and composite solids }}$ |  |
| N8 | $\underline{\text { Calculate exactly with multiples of } \pi}$ |  |

Review and assess terms 3 and 4 - possible Year 10 exams around this time.

## Basic probability:

## Flipchart resources\probability.flipchart



Record, describe and analyse the frequency of outcomes of probability experiments using tables and frequency trees.

| P4 | Apply the property that the probabilities of an exhaustive set of outcomes sum to one <br> Apply the property that the probabilities of an exhaustive set of mutually exclusive events sum to one |  |
| :--- | :--- | :--- | :--- |
| P7 | Construct theoretical possibility spaces for single and combined experiments with equally likely outcomes and <br> use these to calculate theoretical probabilities |  |

## Probability and Sets:

Include in this section the product rule for counting eg, number of ways

## Sets includes intersection, union and complement

Flipchart resources \probability.flipchart
Flipchart resources $\backslash$ Product rule counting.flipchart

| P2 | Apply ideas of randomness, fairness and equally likely events to calculate expected outcomes or multiple future <br> experiments |  |
| :--- | :--- | :--- |
| P3 | Relate relative expected frequencies to theoretical probability, using appropriate language and the $0-1$ <br> probability scale | Understand that empirical unbiased samples tend towards theoretical probability distributions with increasing <br> sample size |
| P6 | Enumerate sets and combinations of sets systematically using tables, grids, Venn diagrams and tree diagrams | know when to add and when to <br> multiply two or more probabilities |
| P8 | Calculate the probability of independent and dependent combined events, including using tree diagrams and <br> other representations, and know the underlying assumptions | Calculate and interpret conditional probabilities through representation using expected frequencies <br> with two-way tables, tree diagrams and Venn diagrams |
| P5 | Apply systematic listing strategies and the use of the product rule for counting |  |

## Transformations:

Flipchart resources\combinations of transformations.flipchart

| G7 | Identify, describe and construct congruent and similar shapes, including on co-ordinate axes, by considering <br> rotation, reflection, translation and enlargement (including fractional and negative scale factors) |  |
| :--- | :--- | :--- |
| G24 | Describe translations as 2D vectors | including using column vector <br> notation for translations |
| G8 | Describe the changes and invariance achieved by combinations of rotations, reflections and <br> translations |  |

## Scatter graphs Flipchart resources\Data (basic) scatters and F polys.flipchart

S6

| Use and interpret scatter graphs of bivariate data |
| :--- |
| Recognise correlation and know that it does not indicate causation |
| Draw estimated lines of best fit |
| Make predictions |
| Interpolate and extrapolate apparent trends whilst knowing the dangers of doing so |

know and understand the terms positive correlation, negative correlation, no correlation, weak correlation and strong correlation

## predictions

nterpolate and extrapolate apparent trends whilst knowing the dangers of doing so

## Statistics: Everything there is to do with data and GCSE in this section.

Start with Averages and spread (S4) including from frequency tables (inc. grouped) and in problem solving where you are given the mean
Flipchart resources\Averages.flipchart
Flipchart resources \Two way tables and frequency trees.flipchart
Flipchart resources \pie charts.flipchart
Flipchart resources\Stem, boxplot, c.f..flipchart
Flipchart resources \Data (basic) scatters and F polys.flipchart
Flipchart resources \histograms.flipchart
Flipchart resources\Stem, boxplot, c.f..flipchart

Finance resources\Finance - Statistics.pdf
Finance resources \Ideas for finance activities - Finding \& comparing data.pptx

| S2 | Interpret and construct tables, charts and diagrams including, for categorical data: <br> - frequency tables <br> - bar charts <br> - pie charts <br> - Stem and leaf diagrams <br> - Two way tables <br> - pictograms <br> - vertical line charts for ungrouped discrete numerical data <br> - tables and line graphs for time series data <br> know their appropriate use | including choosing suitable statistical diagrams yellow highlighted possibly the only ones needed for higher tier |
| :---: | :---: | :---: |
| S4 | Interpret, analyse and compare distributions of data sets from univariate empirical distributions through: <br> - appropriate graphical representation involving discrete, continuous and grouped data, including boxplots <br> - appropriate measures of central tendency (median, mean, mode and modal class) and spread (range, including consideration of outliers) quartiles and inter-quartile range | know and understand the terms primary data, secondary data, discrete data and continuous data |
| S3 | Construct and interpret diagrams for grouped discrete data and continuous data, i.e. histograms with equal and unequal class intervals and cumulative frequency graphs, and know their appropriate use |  |
| S5 | - Apply statistics to describe a population |  |
| S1 | - Infer properties of populations or distributions from a sample, whilst knowing the limitations of sampling |  |

- Construct and interpret diagrams for grouped discrete data and continuous data, i.e. histograms with equal and unequal class intervals and cumulative frequency graphs, and know their appropriate use
- Draw estimated lines of best fit
- Make predictions
- Interpolate and extrapolate apparent trends whilst knowing the dangers of doing so


## Pythagoras theorem and basic trigonometry:

## Flipchart resources $\backslash$ Pythagoras.flipchart

Flipchart resources\Trigonometry.flipchart

| G20 | Know the formula for Pythagoras' Theorem $a 2+b 2=c 2 \mathrm{a} 2+\mathrm{b} 2=\mathrm{c} 2$ <br> Apply it to find angles and lengths in right angled triangles and, where possible, general triangles in two and three dimensional figures <br> Know and use the trigonometric ratios $\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}, \quad \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \text { and } \tan \theta=\frac{\text { opposite }}{\text { adjacent }}$ |
| :---: | :---: |
| G21 | Know the exact values of $\sin \theta$ and $\cos \theta=\underline{0^{\circ}, 30^{\circ} 45^{\circ}, 60^{\circ} \text { and } 90^{\circ}}$ <br> Know the exact value of $\tan \theta$ for $\theta=0^{\circ}, 30^{\circ}, 45^{\circ}$ and $60^{\circ}$ |
| G6 | Apply angle facts, triangle congruence, similarity and properties of quadrilaterals to conjecture and derive results about angles and sides including Pythagoras' Theorem and use known results to obtain simple proofs |
| R12 | Compare lengths using ratio notation; make links to trigonometric ratios |

## Constructions and loci:

Flipchart resources\constructions and loci.flipchart

Use the standard ruler and compass constructions:
including constructing an angle of $60^{\circ}$

- perpendicular bisector of a line segment
- constructing a perpendicular to a given line from / at a given point
- bisecting a given angle

Know that the perpendicular distance from a point to a line is the shortest distance to the line Use these to construct given figures and solve loci problems

## 2D representations of 3D shapes:

Flipchart resources\Plans and Elevations.flipchart
G13 Construct and interpret plans and elevations of 3D shapes

## End of Year 10 learning

## Year 11:



## Further quadratics:

The main part of this is all about solving quadratics, by factorising (a reminder) and in using the formula. This includes solving both linear simultaneous equations and linear/quadratic simultaneous equations.

## Flipchart resources $\backslash$ Quadratics (higher).flipchart

Flipchart resources\Inequality overlearning and regions.flipchart

| A4 | Simplify and manipulate algebraic expressions (including those involving surds) by: expanding products of two or more binomials <br> factorising quadratic expressions of the form $x^{2}+b x+c$ including the difference of two squares factorising quadratic expressions of the form $x^{2}+b x+c$ simplifying expressions involving sums, products and powers, including the laws of indices | A lot of this section is a review of learning completed in Year 10 |
| :---: | :---: | :---: |
| A18 | Solve quadratic equations (including those that require rearrangement) algebraically by factorising, by completing the square and by using the quadratic formula <br> Find approximate solutions using a graph |  |

## Simultaneous equations:

## Flipchart resources\simultaneous equations.flipchart

Solve two simultaneous equations in two variables (linear / linear or linear/quadratic) algebraically Find approximate solutions using a graph

Inequalities: Solving linear/quadratic inequalities and linear inequality regions graphically

## Flipchart resources\Inequalities.flipchart

## Flipchart resources \Inequality overlearning and regions.flipchart

| A22 | Solve linear inequalities in one or two variables and quadratic inequalities <br> in one variable <br> Represent the solution set on a number line, using set notation and on a <br> graph | Quadratic inequalities in Year 11 <br> Know the conventions of an open circle on a number line for a strict <br> inequality and a closed circle for an included boundary <br> In graphical work the convention of a dashed line for strict inequalities <br> and a solid line for an included inequality will be required |
| :--- | :--- | :--- |

```
A22 Solve linear inequalities in one or two variables and quadratic inequalities in one variable; represent the
solution set on a number line, using set notation and on a graph
```

Plotting/drawing other graphs: (see later in SoL for more flipchart resources with circle and trig graph learning)
Flipchart resources\Drawing graphs.flipchart
Drawing lots of different types of graphs: quadratic, cubic, reciprocal, exponential, trig and circle

| A14 | Plot and interpret graphs (including reciprocal graphs and exponential graphs) and graphs of non-standard <br> functions in real contexts, to find approximate solutions to problems such as simple kinematic problems <br> involving distance, speed and acceleration | including problems requiring a <br> graphical solution |
| :--- | :--- | :--- |
| R14 | Interpret the gradient of a straight-line graph as a rate of change |  |

Pre-Calculus: Gradients and rate of change:
Flipchart resources $\backslash$ Pre calculus.flipchart

| R15 | Interpret the gradient at a point on a curve as the instantaneous rate of change <br> Apply the concepts of average and instantaneous rates of change (gradients of chords and <br> tangents) in numerical, algebraic and graphical contexts |  |
| :--- | :--- | :--- |
| R14 | Interpret the gradient of a straight-line graph as a rate of change |  |

## Area under a curve:

## Flipchart resources $\backslash$ Pre calculus.flipchart

| A15 | Calculate or estimate gradients of graphs and areas under graphs (including quadratic and other non-linear <br> graphs) <br> Interpret the results in cases such as distance-time graphs, velocity-time graphs and graphs in financial contexts |
| :--- | :--- |

Sequences: Main teaching is nth terms of linear and quadratic sequences with a little knowledge of geometric sequences and Fibonacci thrown in

## Flipchart resources\sequences (higher).flipchart

| A23 | Generate terms of a sequence from either a term-to-term or a position-to-term rule | including from patterns and diagrams |
| :--- | :--- | :--- |
| A24 | Recognise and use: <br> - sequences of triangular, square and cube numbers <br> - simple arithmetic progression <br> - Fibonacci type sequences <br> - quadratic sequences <br> - and simple geometric progressions ( $r^{n}$ where $n$ is an integer and $r$ is a rational number $\left.>0\right)$ <br> - other sequences | other recursive sequences will be <br> defined in the question |
| A25 | Deduce expressions to calculate the nth term of linear and quadratic sequences |  |

## Direct and inverse proportion:

Flipchart resources\Proportionality.flipchart

| R10 | Solve problems involving direct and inverse proportion, including graphical and algebraic representations |  |
| :--- | :--- | :--- |
| R13 | Understand that $x$ is inversely proportional to $y$ <br> Construct and interpret equations that describe direct and inverse proportion |  |
| R14 | $\underline{\text { Recognise and interpret graphs that illustrate direct and inverse proportion }}$ |  |$\quad$|  |
| :--- |

## Functions: composite and inverse

## Flipchart resources $\backslash$ functions.flipchart

| A7 | Where appropriate, interpret simple expressions as functions with inputs and outputs <br> Interpret the reverse process as the 'inverse function' <br> Interpret the succession of two functions as a 'composite function' |
| :--- | :--- |

understand and use function notation: $f(x) f(x), f g(x) f g(x), f-1(x) f-$ $1(x)$ is expected at higher tier

## Sine and cosine rules:

Flipchart resources\sine cosine rules.flipchart

| G22 | Know and apply the Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ |  |
| :--- | :--- | :--- | :--- |
| and Cosine rule $\quad a^{2}=b^{2}+c^{2}-2 b c \cos A$ to find unknown lengths and angles |  |  |
| G23 | $a b s \sin C \quad$ to calculate the area, sides or angles of any triangle |  |

## Vectors:

## Flipchart resources\Vectors.flipchart

G25 Apply addition and subtraction of vectors, multiplication of vectors by a scalar, and diagrammatic and column representation of vectors
Use vectors to construct geometric arguments and proofs

## Congruence and similarity:

## Flipchart resources\congruency.flipchart

Flipchart resources\similarity (higher).flipchart

| G5 | $\underline{\text { Use the basic congruence criteria for triangles (SSS, SAS, ASA, RHS) }}$ |  |
| :--- | :--- | :--- |
| G6 | Apply angle facts, triangle congruence, similarity and properties of quadrilaterals to conjecture and derive results <br> about angles and sides including the base angles of an isosceles triangle are equal, and use known results to obtain <br> simple proofs | Similar lengths, areas and <br> Golumes in similar figures |

## Sketching graphs:

## Flipchart resources\Further graphs and transformations.flipchart

| A12 | Recognise, sketch and interpret graphs of linear functions, quadratic functions, simple cubic <br> functions and the reciprocal function | including using the symmetry of functions |
| :--- | :--- | :--- | :--- |
| $y=\frac{1}{x}$ |  |  |
| with $x \neq 0$ |  |  |

## Trigonometric graphs/Transforming functions:

## Flipchart resources \Further graphs and transformations.flipchart

| A12 | Recognise, sketch and interpret the trigonometric functions (with arguments in <br> degrees) $y=\sin x, y=\cos x$ and $y=\tan x$ for angles of any size |  |
| :--- | :--- | :--- |
| A12 | Recognise, sketch and interpret graphs of linear functions, quadratic functions, simple cubic functions and the reciprocal <br> function <br> $y=\frac{1}{x}$ with $x \neq 0, ~ e x p o n e n t i a l ~ f u n c t i o n s ~$ <br> $y=k x$ <br> for positive values of $k$ | A review of graph <br> work covered earlier in <br> the SOW |
| A13 | Sketch translations and reflections of a given function |  |

## Equation of a circle:

Flipchart resources \Gradients and equations (higher2).flipchart

| A16 | Recognise and use the equation of a circle with centre at the origin <br> Find the equation of a tangent to a circle at a given point. | A really good time to <br> revise all straight line <br> coordinate geometry |
| :--- | :--- | :--- |
| A9 | Use the form $y=m x+c$ to identify parallel lines and perpendicular lines <br> Find the equation of the line through two given points, or through one point with a given gradient | This stuff |

## REVISION

Teacher choice - what needs to be gone back over/re-taught. Issues from mocks, lowlights from pinpoint learning etc.

