Surds

- 1 Write $\sqrt{48}$ in the form $k\sqrt{3}$, where k is an integer.
- Write $\sqrt{50}$ in the form $k\sqrt{2}$, where k is an integer.
- 3 Write $5\sqrt{27}$ in the form $k\sqrt{3}$, where k is an integer.
- 4 Write $7\sqrt{20}$ in the form $k\sqrt{5}$, where k is an integer.
- 5 Expand and Simplify $(2 + \sqrt{3})(2 \sqrt{3})$
- Write $(3 + \sqrt{5})^2$ in the form $a + b\sqrt{5}$, where a and b are integers.
- 7 Expand and Simplify $(2 + \sqrt{5})(1 \sqrt{5})$
- Write $(3 \sqrt{2})^2$ in the form $a + b\sqrt{2}$, where a and b are integers.
- **9** Expand and Simplify $(2 + \sqrt{3})^2 (2 \sqrt{3})^2$
- 10 Rationalise the denominator $\frac{6}{\sqrt{3}}$
- 11 Rationalise the denominator $\frac{x}{\sqrt{x}}$

Rationalise the denominator
$$\frac{1+\sqrt{5}}{\sqrt{2}}$$

Simplify
$$\frac{(3+\sqrt{6})}{\sqrt{3}}$$

14 Simplify fully
$$\frac{(4+2\sqrt{3})(4-2\sqrt{3})}{\sqrt{11}}$$

Show that
$$\frac{5+2\sqrt{3}}{2+\sqrt{3}}$$
 can be written as $4-\sqrt{3}$

16 Show that
$$\frac{3\sqrt{3}+3}{3+\sqrt{3}}$$
 can be written as $\sqrt{3}$

Show that
$$\frac{1}{\frac{1}{\sqrt{2}} + \sqrt{2}}$$
 can be written as $\frac{\sqrt{2}}{3}$

Show that
$$\frac{2}{\frac{1}{\sqrt{3}} + 1}$$
 can be written as $3 - \sqrt{3}$

19 Simplify fully
$$(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b})$$

20 Simplify fully
$$(2a + \sqrt{b})^2$$