Exponential and Log Equations

Date:

Time:
Total marks available: 75
Total marks achieved:

Questions

Q1.

Given that

$$
2 \log _{2}(x+15)-\log _{2} x=6
$$

(a) Show that
$x^{2}-34 x+225=0$
(b) Hence, or otherwise, solve the equation
$2 \log _{2}(x+15)-\log _{2} x=6$

Q2.
(a) Find the value of y such that

$$
\begin{equation*}
\log _{2} y=-3 \tag{2}
\end{equation*}
$$

(b) Find the values of x such that

$$
\frac{\log _{2} 32+\log _{2} 16}{\log _{2} x}=\log _{2} x
$$

Q3.
(a) Sketch the graph of $y=7^{x}, x \in \mathbb{R}$, showing the coordinates of any points at which the graph crosses the axes.
(b) Solve the equation

$$
7^{2 x}-4\left(7^{x}\right)+3=0
$$

giving your answers to 2 decimal places where appropriate.

Q4.
Given that $y=3 x^{2}$,
(a) show that $\log _{3} y=1+2 \log _{3} x$
(b) Hence, or otherwise, solve the equation
$1+2 \log _{3} x=\log _{3}(28 x-9)$

Q5.

$$
f(x)=2 x^{3}-5 x^{2}+a x+18
$$

where a is a constant.
Given that $(x-3)$ is a factor of $f(x)$,
(a) show that $a=-9$
(b) factorise $\mathrm{f}(x)$ completely.

Given that

$$
g(y)=2\left(3^{3 y}\right)-5\left(3^{2 y}\right)-9\left(3^{y}\right)+18
$$

(c) find the values of y that satisfy $\mathrm{g}(y)=0$, giving your answers to 2 decimal places where appropriate.

Q6.
(i) Find the exact value of x for which

$$
\begin{equation*}
\log _{2}(2 x)=\log _{2}(5 x+4)-3 \tag{4}
\end{equation*}
$$

(ii) Given that

$$
\log _{a} y+3 \log _{a} 2=5
$$

express y in terms of a.
Give your answer in its simplest form.

Q7.

Given that $\log _{3} x=a$, find in terms of a,
(a) $\log _{3}(9 x)$
(b) $\log _{3}\left(\frac{x^{5}}{81}\right)$
giving each answer in its simplest form.
(c) Solve, for x,

$$
\log _{3}(9 x)+\log _{3}\left(\frac{x^{5}}{81}\right)=3
$$

giving your answer to 4 significant figures.

Q8.
(a) Sketch the graph of

$$
y=3^{x}, \quad x \in \mathbb{R}
$$

showing the coordinates of any points at which the graph crosses the axes.
(b) Use algebra to solve the equation

$$
3^{2 x}-9\left(3^{x}\right)+18=0
$$

giving your answers to 2 decimal places where appropriate.

Q9.
(i) Solve

$$
5^{y}=8
$$

giving your answer to 3 significant figures.
(ii) Use algebra to find the values of x for which

$$
\begin{equation*}
\log _{2}(x+15)-4=1 / 2 \log _{2} x \tag{6}
\end{equation*}
$$

Q10.
(i) Use logarithms to solve the equation $8^{2 x+1}=24$, giving your answer to 3 decimal places.
(ii) Find the values of y such that

$$
\begin{equation*}
\log _{2}(11 y-3)-\log _{2} 3-2 \log _{2} y=1, \quad y>\frac{3}{11} \tag{6}
\end{equation*}
$$

