11CMN Cramming Lesson
Eq of Circle
Equation of circle radius r centred on the origin is $x^{2}+y^{2}=r^{2}$

Example $x^{2}+y^{2}=5^{2}$
or $x^{2}+y^{2}=25$

$$
E \times 2 \quad x^{2}+y^{2}=13
$$

would be circle centre $(0,0)$ radius $\sqrt{13}$

Similar Area and Volume
2. Below are two similar pentagonal prisms.

The volume of prism A is $15 \mathrm{~cm}^{3}$ Work out the volume of prism B.

If Length is
Area
Volume is

9 cm
\qquad
10. The two buckets below are similar.

Find y

Vol 1000: 8000

$$
\begin{aligned}
& =1: 8 \\
\text { Leann } & =\sqrt[3]{1}: \sqrt[3]{8} \\
& =1: 2
\end{aligned}
$$

$$
y=20 \times 2^{(2)}=40 \mathrm{~cm}
$$

Density
70 g of compound A has a volume of $100 \mathrm{~cm}^{3}$
Use SOS of compound B which has a density of $8 \mathrm{~g} / \mathrm{cm}^{3}$

Use $50 \mathrm{~cm}^{3}$ of compand C which has a density of $\& \mathrm{~s} / \mathrm{cn}^{3}$

What is the density of these 3 mixed together.

$$
\text { Average Density }=\frac{\text { Total Mass }}{\text { Total Volvas }}
$$

Density Moss Vol
$A \quad 70 \mathrm{~g} \quad 100 \mathrm{~cm}^{3}$
$3 \quad 8{\mathrm{~s} / \mathrm{cm}^{3}} \quad 5 \mathrm{~g} \quad 6.25 \mathrm{cn}^{3}$
C $\begin{array}{lll}4 \mathrm{stan} / \mathrm{cm}^{3} \quad 200 \mathrm{~g} & 50 \mathrm{cn}^{3} \\ 320 \mathrm{~s} & 156.25 \mathrm{~cm}^{3}\end{array}$

$$
\begin{array}{rlrl}
D=\frac{m}{V} & \text { For } B & V=\frac{m}{D}=\frac{50}{8}=6.25 \\
D V=M & \text { For } & M=D_{x V}=4 \times 50=200 \mathrm{~g} \\
V=\frac{M}{D} & \text { Average Density } & =\frac{\text { Total Mass }}{\text { Toter Vol }} \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &
\end{array}
$$

If we mix 80 g of C with density $5 \mathrm{~s} / \mathrm{cm}^{3}$ with $100 \mathrm{~cm}^{3}$ of D with density $10 \mathrm{~g} / \mathrm{cm}^{3}$ What is the astrage density of the compound

	Density $5 \mathrm{~s} / \mathrm{cn}^{3}$ Mas 80 g	$16 \mathrm{~cm}^{3}$	
D	$10 \mathrm{~s} / \mathrm{cn}^{3}$	1000 s	$100 \mathrm{~cm}^{3}$
		1080 g	$116 \mathrm{~cm}^{3}$

$$
\begin{aligned}
& \text { Auge Densely }=\frac{\text { Tot ross }}{\text { Tot vol }}=\frac{1080}{1 / 6} \\
&=9.31 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

Estimation
Find and estimate for

$$
\begin{aligned}
\frac{38.3 \times 19.2}{18.4} & =\frac{40 \times 20}{20} \\
& =40
\end{aligned}
$$

The catch question
$E+2$

$$
\begin{aligned}
\frac{39.2 \times 9.9}{0.4} & \approx \frac{40 \times 10}{0.4} \\
& \sim \frac{400}{0.4}=\frac{4000}{4} \\
6 \div 3=2 & \text { Ans }=1000 \\
60 \div 30=2 &
\end{aligned}
$$

$$
600 \div 300=2
$$

Round All numbers to 1 sig fig

