Sine Role and Cosine Rule - Which One?
To use sine rule os cosine rule to 'solve' a triangle we need to know:

3 sides
or 2 sides and 1 angle
or 2 angles and 1 side
If one set of the above criteria are known it is possible to find all 3 sides and all 3 angles of the triangle.

It is not enough to know 3 angles because the triangle can be any size as it can be enlarger preserving the angles.

Sine rule requires complete knowledge of an opposite pair (angle and opposite side)

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Cosine rule is used when two sides and the included angle are known (to find a side) Also used to find an angle if 3 sides are known.

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

and $\quad \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$

Exercise Find x or 0
1)

Sine Role

$$
\begin{aligned}
& \frac{9}{\sin 62^{\circ}}=\frac{x}{\sin 36^{\circ}} \\
& x=\frac{9}{\sin 62^{\circ}} \times \sin 34^{\circ}=5.7 \mathrm{~cm}
\end{aligned}
$$

3)

sine Rule

$$
\begin{aligned}
& \frac{5}{\sin \theta}=\frac{13}{\sin 125} \\
& \frac{\sin \theta}{5}=\frac{\sin 125^{\circ}}{13} \\
& \sin \theta=\frac{\sin 125}{13} \times 5 \\
& \sin \theta=0.315058 \\
& \theta=\sin ^{-1}(0.315058) \\
& \theta=18.4^{\circ}
\end{aligned}
$$

2)

$$
\begin{gathered}
x \\
5 \mathrm{~cm} 83^{\circ} \quad \text { Cosine rule } \\
x^{2}=5^{2}+8^{2}-2 \times 5 \times 8 \cos 83 \\
x^{2}=79.25 \\
x=\sqrt{74.25} \\
x=8.9 \mathrm{~cm}
\end{gathered}
$$

4)

 cosine rule

$$
\begin{aligned}
& \cos \theta=\frac{\left(8^{2}+9^{2}-10^{2}\right)}{(2 \times 8 \times 9)}=\frac{5}{16} \\
& \theta=\cos ^{-1}\left(\frac{5}{16}\right) \\
& \theta=71.8^{\circ}
\end{aligned}
$$

Exercise B Find side x or angle θ.
You must decide whether to use Sine Rule or Cosine Rule.
5)

6)

8)

9)

7)

10)

SINE AND COSINE RULES
EXERCISE
Exercise B
5.

Cosine Rule

$$
\begin{aligned}
\cos \theta & =\frac{8^{2}+9^{2}-8^{2}}{2 \times 8 \times 9} \\
\cos \theta & =0.5625 \\
\theta & =\cos ^{-1} 0.5625 \\
\theta & =55.8^{\circ}
\end{aligned}
$$

7.

Sine Rule

$$
\begin{aligned}
\frac{x}{\sin 62^{\circ}} & =\frac{21}{\sin 83^{\circ}} \\
\Rightarrow x & =\frac{21}{\sin 83^{\circ}} \times \sin 62^{\circ} \\
\Rightarrow x & =18.68 \mathrm{~cm}
\end{aligned}
$$

6.

Sine Rule

$$
\begin{aligned}
\frac{12}{\sin 115^{\circ}} & =\frac{7}{\sin \theta} \\
\Rightarrow \quad 12 \sin \theta & =7 \sin 115^{\circ} \\
\Rightarrow \quad \sin \theta & =\frac{7 \sin 115^{\circ}}{12} \\
\theta & =\sin ^{-1}\left(\frac{7 \sin 115^{\circ}}{12}\right) \\
\theta & =31.9^{\circ}
\end{aligned}
$$

SINE AND COSINE RULES
9.

Sine Rule

$$
\begin{aligned}
& \frac{x}{\sin 40^{\circ}}=\frac{10}{\sin 80^{\circ}} \\
\Rightarrow & x=\frac{10}{\sin 80^{\circ}} \times \sin 40^{\circ} \\
\Rightarrow & x=6.53 \mathrm{~m}
\end{aligned}
$$

10.

Cosine Rule

$$
\begin{aligned}
& x^{2}=19^{2}+16^{2}-2 \times 19 \times 16 \cos 71^{\circ} \\
& x^{2}=419.05 \\
& x=20.47 \mathrm{~m}
\end{aligned}
$$

Problem Solving
A yacht leaves Port A and sails on a bearing of 040° for 8 km to B. It then sails 10 km on a bearing of $130^{\circ} \mathrm{toC}$. What bearing should it sail on to go directly back to Port A and how far will that leg of the journey be?

$$
\begin{aligned}
& x^{2}=8^{2}+10^{2}-2 \times 8 \times 10 \cos 90 \\
& x^{2}=164 \\
& x=\sqrt{164}=12.8 \mathrm{~km}
\end{aligned}
$$

sine rub

$$
\begin{aligned}
& \frac{x}{\sin 90}=\frac{8}{\sin \theta} \\
& \frac{\sin 90}{12.8}=\frac{\sin \theta}{8}
\end{aligned}
$$

$$
\frac{\sin 90}{12.8} \times 8=\sin \theta
$$

$$
\frac{5}{8}=\sin \theta
$$

$$
\theta=\sin ^{-1}\left(\frac{5}{8}\right)
$$

$$
\theta=39^{\circ} \quad \text { (nest deg rec) }
$$

$$
\text { Bearing }=360-(39+50)=271^{\circ}
$$

