In all the questions below, n is a positive integer.
17. If $2 n$ is always even for all positive integer values of n, prove algebraically that the sum of the squares of any two consecutive even numbers is always a multiple of 4 .

Let numbers be $2 n$ and $2 n+2$

$$
\begin{aligned}
& (2 n)^{2}+(2 n+2)^{2} \\
= & 4 n^{2}+4 n^{2}+8 n+4 \\
= & 8 n^{2}+8 n+4 \\
= & 4\left(2 n^{2}+2 n+1\right)
\end{aligned}
$$

4 is a factor so answer is a multiple of 4
19. Prove algebraically that the sum of the squares of any two consecutive numbers always leaves a remainder of 1 when divided by 4 .

Let consecutive numbers be n and $n+1$

$$
\begin{aligned}
& n^{2}+(n+1)^{2} \\
= & n^{2}+n^{2}+2 n+1 \\
= & 2 n^{2}+2 n+1 \\
= & 2 n(n+1)+1
\end{aligned}
$$

Either n or $n+1$ must be even and so have a factor of 2 .
$\therefore 2 n(n+1)$ has a factor of 4

$$
\therefore \quad 2 n(n+1)+1=\text { a multiple of } 4+1
$$

2. Prove that $(3 n+1)^{2}-(3 n-1)^{2}$ is a multiple of 4 , for all positive integer values of n.

$$
\begin{aligned}
& (3 n+1)^{2}-(3 n-1)^{2} \\
= & \left(9 n^{2}+6 n+1\right)-\left(9 n^{2}-6 n+1\right) \\
= & 9 n^{2}+6 n+1-9 n^{x}+6 n-7 \\
= & 12 n \\
= & 4(3 n)
\end{aligned}
$$

3. Prove, using algebra, that the sum of two consecutive whole numbers is always an odd number.

Let consecutive numbers be n and $n+1$

$$
n+n+1=2 n+1
$$

which is odd
*5. Prove algebraically that the difference between the squares of any two consecutive integers is equal to the sum of these two integers.

Let integers be n and $n+1$

$$
\begin{aligned}
& (n+1)^{2}-n^{2} \\
= & n^{2}+2 n+1-n^{2} \\
= & 2 n+1 \\
= & n+(n+1)
\end{aligned}
$$

Squaring Something and a half

$$
\begin{aligned}
& \text { Exr }\left(4 \frac{1}{2}\right)^{2}=4 \times 5+\frac{1}{4}=20 \frac{1}{4} \\
& E \times 2\left(7 \frac{1}{2}\right)^{2}=7 \times 8+\frac{1}{4}=56 \frac{1}{4} \\
& \left(n+\frac{1}{2}\right)^{2} \\
& =\left(n^{2}+n+\frac{1}{4}\right) \\
& =n(n+1)+\frac{1}{4} \\
& \text { Ext }\left(1 \frac{1}{2}\right)^{2}=1 \times 2+\frac{1}{4}=2 \frac{1}{4} \\
& \text { Ext } 25^{2}=625 \\
& (2.5)^{2}=6.25
\end{aligned}
$$

Ex $45^{2}=2025$
Ex 6 $75^{2}=5625$

$$
95^{2}=9025
$$

Prime Numbers
A prime number is a positive integer which is only divisible by 1 and itself. (1 is not regarded as a prime number)

Low Primes

$$
\begin{aligned}
& 2,3,5,7,11,13,17,19,23,29 \\
& 31,37,41,43,47,53,59,61,67 \\
& 71,73,79,83,89,91,97
\end{aligned}
$$

All integersilcan be written as the product of their prime factors

$$
\begin{aligned}
& 2 \lcm{72} \\
& 2 \lcm{36} \\
& 2 \overleftrightarrow{18} \\
& 3 \frac{19}{\frac{3}{1}}
\end{aligned} \quad=2 \times 2 \times 2 \times 3 \times 3
$$

$$
\begin{aligned}
& 2 \lcm{60} \\
& 2 \lcm{30} \\
& 3 \lcm{15} \\
& 5 \frac{\boxed{5}}{1}
\end{aligned} \quad 60=2 \times 2 \times 3 \times 5
$$

Find Highest Common Factor HCF of 60 and 72

$$
\begin{aligned}
72 & =(2) \times(2) \times 2 \times(3) \times 3 \\
60 & =(2) \times(2) \times(3) \times 5 \\
H C F & =2 \times 2 \times 3=12
\end{aligned}
$$

Find Lowest Common Multiple LCM of 72 and 60

$$
\text { LCM }=2 \times 2 \times 2 \times 3 \times 3 \times 5=360
$$

Find HCF and LCM of 63 and 84

$$
\begin{aligned}
& 3 \lcm{63} \\
& 3 \underline{21} \\
& 7 \frac{\boxed{7}}{1} \\
& 2 \lcm{84} \\
& 2 \lcm{42} \\
& 3 \frac{121}{7} \\
& 2 \frac{1}{1}
\end{aligned} \quad 84=3 \times 3 \times 7
$$

$$
\begin{aligned}
& H C F=3 \times 7=21 \\
& \text { LCM }=2 \times 2 \times 3 \times 7 \times 3=249
\end{aligned}
$$

