Monopoly Dice - Red and Blue
Blue

$*$						
Red		1	2	3	4	5
	6					
	2	3	4	5	6	7
	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	4	10	11
6	7	8	9	10	11	12

36 passible physical outcomes
A red 1 and a blue 2 is not the same outcome as a red 2 and a blue 1 .

Probability
 Table Probability $\frac{1}{36} \frac{2}{36} \frac{3}{36} \quad \frac{4}{36} \frac{5}{36} \frac{6}{36} \frac{5}{36} \frac{4}{36} \frac{3}{36} \frac{2}{36} \frac{1}{36}$

Find when you roll the two monopoly dice

1) Prob (Even scose) $=\frac{18}{36}=\frac{1}{2}$
2) Prob (Score is prime) $=\frac{15}{36}=\frac{5}{12}$
3) $\operatorname{Prob}(S c o r e>7)=\frac{15}{36}$
4) $\operatorname{Pros}($ Score a multiple of 3$)=\frac{12}{36}=\frac{1}{3}$
5) $\operatorname{Prob}\left(\right.$ Score same on each die) $=\frac{6}{36}=\frac{1}{6}$

Multiplying the Scores on the Dice

x	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	8	10	12
3	3	6	9	12	15	18
4	4	8	12	16	20	24
5	5	10	15	20	25	30
6	6	12	18	24	30	36

Which score has highest probability?

$$
P(12)=\frac{4}{36}=\frac{1}{9} \quad \begin{aligned}
& 2 \times 6 \\
& 6 \times 2 \\
& 3 \times 4 \\
& 4 \times 3
\end{aligned}
$$

Subtract smaller score from larger score

-	1	2	3	4	5	6
1	0	1	2	3	4	5
2	1	0	1	2	3	4
3	2	1	0	1	2	3
4	3	2	1	0	1	2
5	4	3	2	1	0	1
6	5	4	3	2	1	0

Which score has highat probability and what is it?

$$
P(1)=\frac{10}{36}=\frac{5}{18}
$$

Independent Events and the 'AND' Rule

Spinning a coin multiple times
Each spin is independent of the others and the prob of obtaining a Head remains at $\frac{1}{2}$

What is the probability of 3 successive heads

$$
\begin{aligned}
& \text { HHH } \\
& \text { HOT } \\
& \text { HTH }
\end{aligned} \quad P(H H H)=\frac{1}{8}
$$

HT t
TH H
TH

$$
\begin{array}{ll}
\text { TTH } \\
\text { TNT } & P(H H+1)=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}
\end{array}
$$

More generally if two events A and B are independent then

$$
P(A, B)=P(A) \times P(B)
$$

In other words the probability of two independent events happening is obtained by multiplying their individual probabilities together

Eg Roll a die and spin a coin
what is the prob of obtaining a 5 and a Head

$$
\begin{array}{llll}
& & P(5)=\frac{1}{6} & P(H)=\frac{1}{2} \\
H 1 & T 1 & P(5 \cap H)=\frac{1}{6} \times \frac{1}{2}=\frac{1}{12} \\
H 2 & T 2 & P\left(S_{n} H\right)=\frac{1}{12} \\
H 3 & T 3 & T 4 & \\
H 4 & T 5 & &
\end{array}
$$

