Question Number	Scheme		Marks
3. (a)	From question, $\frac{\mathrm{d} A}{\mathrm{~d} t}=0.032$	$\frac{\mathrm{d} A}{\mathrm{~d} t}=0.032 \text { seen }$ or implied from working.	B1
	$\left\{A=\pi x^{2} \Rightarrow \frac{\mathrm{~d} A}{\mathrm{~d} x}=\right\} 2 \pi x$	$2 \pi x$ by itself seen or implied from working	B1
	$\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\mathrm{d} A}{\mathrm{~d} t} \div \frac{\mathrm{d} A}{\mathrm{~d} x}=(0.032) \frac{1}{2 \pi x} ;\left\{=\frac{0.016}{\pi x}\right\}$	$0.032 \div \text { Candidate's } \frac{\mathrm{d} A}{\mathrm{~d} x}$	M1;
	When $x=2 \mathrm{~cm}, \frac{\mathrm{~d} x}{\mathrm{~d} t}=\frac{0.016}{2 \pi}$		
	Hence, $\frac{\mathrm{d} x}{\mathrm{~d} t}=0.002546479 \ldots\left(\mathrm{~cm} \mathrm{~s}^{-1}\right)$	awrt 0.00255	Al cso [4]
(b)	$V=\underline{\pi x^{2}(5 x)}=\underline{5 \pi x^{3}}$	$V=\underline{\pi x^{2}(5 x)}$ or $\underline{5 \pi x^{3}}$	B1
	$\frac{\mathrm{d} V}{\mathrm{~d} x}=15 \pi x^{2}$ $\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}=15 \pi x^{2} .\left(\frac{0.016}{\pi x}\right) ;\{=0.24 x\}$ When $x=2 \mathrm{~cm}, ~ \frac{\mathrm{~d} V}{\mathrm{~d} t}=0.24(2)=\underline{0.48}\left(\mathrm{~cm}^{3} \mathrm{~s}^{-1}\right)$	$\frac{\mathrm{d} V}{\mathrm{~d} x}=15 \pi x^{2}$ or ft from candidate's V in one variable	B1 $\sqrt{ }$
		Candidate's $\frac{\mathrm{d} V}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}$;	M1 $\sqrt{ }$
		$\underline{0.48}$ or awrt 0.48	Al cso
			[4]
			8 marks

Jan 2009

Question Number	Scheme		Marks
5. (a)	Similar triangles $\Rightarrow \underline{\frac{r}{h}=\frac{16}{24} \Rightarrow r=\frac{2 h}{3}}$	Uses similar triangles, ratios or trigonometry to find either one of these two expressions oe.	M1
	$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi\left(\frac{2 h}{3}\right)^{2} h=\frac{4 \pi h^{3}}{27} \quad \mathbf{A G}$	Substitutes $r=\frac{2 h}{3}$ into the formula for the volume of water V.	A1
(b)	From the question, $\frac{\mathrm{d} V}{\mathrm{~d} t}=8$	$\frac{\mathrm{d} V}{\mathrm{~d} t}=8$	B1
	$\frac{\mathrm{d} V}{\frac{\mathrm{~d} h}{}}=\frac{12 \pi h^{2}}{27}=\frac{4 \pi h^{2}}{9}$	$\frac{\mathrm{d} V}{\frac{\mathrm{~d} h}{}}=\frac{12 \pi h^{2}}{27} \text { or } \frac{4 \pi h^{2}}{9}$	B1
	$\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} t} \div \frac{\mathrm{d} V}{d h}=8 \times \frac{9}{4 \pi h^{2}}=\frac{18}{\pi h^{2}}$	$\begin{array}{r} \text { Candidate's } \frac{\mathrm{d} V}{\mathrm{~d} t} \div \frac{\mathrm{d} V}{\mathrm{~d} h} ; \\ 8 \div\left(\frac{12 \pi h^{2}}{27}\right) \text { or } 8 \times \frac{9}{4 \pi h^{2}} \text { or } \frac{18}{\frac{\pi h^{2}}{}} \text { oe } \end{array}$	M1; A1
	When $h=12, \frac{\mathrm{~d} h}{\mathrm{~d} t}=\frac{18}{\underline{144 \pi}}=\frac{1}{\underline{8 \pi}}$	$\frac{18}{144 \pi} \text { or } \frac{1}{8 \pi}$	A1 oe isw
			[5]
			7 marks

Note the answer must be a one term exact value.
Note, also you can ignore subsequent working after $\frac{18}{144 \pi}$.

Jan 2010

June 2011

June 2012

\begin{tabular}{|c|c|c|c|}
\hline Question Number \& \& Scheme \& Marks \\
\hline \multirow[t]{3}{*}{4.} \& \multicolumn{2}{|l|}{\[
\begin{gathered}
\frac{\mathrm{d} V}{\mathrm{~d} t}=80 \pi, \quad V=4 \pi h(h+4)=4 \pi h^{2}+16 \pi h, \\
\frac{\mathrm{~d} V}{\mathrm{~d} h}=8 \pi h+16 \pi
\end{gathered}
\]} \& \\
\hline \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& \left\{\frac{\mathrm{d} V}{\mathrm{~d} h} \times \frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} t} \Rightarrow\right\} \quad(8 \pi h+16 \pi) \frac{\mathrm{d} h}{\mathrm{~d} t}=80 \pi \\
\& \left\{\frac{\mathrm{~d} h}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} t} \div \frac{\mathrm{d} V}{\mathrm{~d} h} \Rightarrow\right\} \quad \frac{\mathrm{d} h}{\mathrm{~d} t}=80 \pi \times \frac{1}{8 \pi h+16 \pi}
\end{aligned}
\]} \& M1 oe \\
\hline \& \multicolumn{2}{|l|}{\begin{tabular}{l}
When \(h=6,\left\{\frac{\mathrm{~d} h}{\mathrm{~d} t}=\right\} \frac{1}{8 \pi(6)+16 \pi} \times 80 \pi\left\{=\frac{80 \pi}{64 \pi}\right\}\) \\
dependent on the previous M1 \\
see notes
\[
\frac{\mathrm{d} h}{\mathrm{~d} t}=\underline{1.25}\left(\mathrm{cms}^{-1}\right)
\]
\[
1.25 \text { or } \frac{5}{4} \text { or } \frac{10}{8} \text { or } \frac{80}{64}
\]
\end{tabular}} \& dM1
A1 oe \\
\hline \& \multicolumn{2}{|l|}{Product rule: \(\left\{\begin{array}{rlrl}u \& =4 \pi h \& v \& =h+4 \\ \frac{\mathrm{~d} u}{\mathrm{~d} h} \& =4 \pi \& \frac{\mathrm{~d} v}{\mathrm{~d} h} \& =1\end{array}\right\}\)
\[
\begin{array}{lr}
\frac{\mathrm{d} V}{\mathrm{~d} h}=4 \pi(h+4)+4 \pi h \& \pm \alpha h \pm \beta, \alpha \neq 0, \beta \neq 0 \\
4 \pi(h+4)+4 \pi h
\end{array}
\]} \& M1 \\
\hline \& \multicolumn{3}{|c|}{Question 4 Notes} \\
\hline \& \multirow[t]{2}{*}{\begin{tabular}{l}
\[
\begin{gathered}
\hline \text { M1 } \\
\hline \text { A1 }
\end{gathered}
\] \\
Note \\
Note
\end{tabular}} \& \multicolumn{2}{|l|}{An expression of the form \(\pm \alpha\) 迬, \(\alpha \neq 0, \beta \neq 0\). Can be simplified or un-simplified.} \\
\hline \& \& \multicolumn{2}{|l|}{\begin{tabular}{l}
Correct simplified or un-simplified differentiation of \(V\). \\
eg. \(8 \pi h+16 \pi\) or \(4 \pi(h+4)+4 \pi h\) or \(8 \pi(h+2)\) or equivalent. \\
Some candidates will use the product rule to differentiate \(V\) with respect to \(h\). (See Alt Method 1). \(\frac{\mathrm{d} V}{\mathrm{~d} h}\) does not have to be explicitly stated, but it should be clear that they are differentiating their \(V\).
\end{tabular}} \\
\hline \& M1
Note
Note
dM1

A1
Note

Note \& \multicolumn{2}{|l|}{| $\left(\text { Candidate's } \frac{\mathrm{d} V}{\mathrm{~d} h}\right) \times \frac{\mathrm{d} h}{\mathrm{~d} t}=80 \pi \text { or } 80 \pi \div \text { Candidate's } \frac{\mathrm{d} V}{\mathrm{~d} h}$ |
| :--- |
| Also allow $2^{\text {nd }}$ M1 for (Candidate's $\left.\frac{\mathrm{d} V}{\mathrm{~d} h}\right) \times \frac{\mathrm{d} h}{\mathrm{~d} t}=\mathbf{8 0}$ or $\mathbf{8 0} \div$ Candidate's $\frac{\mathrm{d} V}{\mathrm{~d} h}$ |
| Give $2^{\text {nd }}$ M0 for (Candidate's $\left.\frac{\mathrm{d} V}{\mathrm{~d} h}\right) \times \frac{\mathrm{d} h}{\mathrm{~d} t}=\mathbf{8 0} \boldsymbol{\pi}$ t or $\mathbf{8 0 k}$ or $\mathbf{8 0} \boldsymbol{\pi} \mathbf{t}$ or $\mathbf{8 0 k} \div$ Candidate's $\frac{\mathrm{d} V}{\mathrm{~d} h}$ which is dependent on the previous M1 mark. |
| Substitutes $h=6$ into an expression which is a result of a quotient of their $\frac{\mathrm{d} V}{\mathrm{~d} h}$ and 80π (or 80) 1.25 or $\frac{5}{4}$ or $\frac{10}{8}$ or $\frac{80}{64}$ (units are not required). |
| $\frac{80 \pi}{64 \pi}$ as a final answer is A0. |
| Substituting $h=6$ into a correct $\frac{\mathrm{d} V}{\mathrm{~d} h}$ gives 64π but the final M1 mark can only be awarded if this is used as a quotient with 80π (or 80) |} \\

\hline
\end{tabular}

