Jun 2008

Rates of Change 2008-14

Question Number	Scheme	Marks
3. (a)	From question, $\frac{dA}{dt} = 0.032$ $\frac{dA}{dt} = 0.032$ seen or implied from working.	B1
	$\left\{A = \pi x^2 \implies \frac{dA}{dx} = \right\} 2\pi x$ $2\pi x \text{ by itself seen or implied from working}$	B1
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}t} \div \frac{\mathrm{d}A}{\mathrm{d}x} = (0.032)\frac{1}{2\pi x}; \left\{ = \frac{0.016}{\pi x} \right\}$ 0.032 ÷ Candidate's $\frac{\mathrm{d}A}{\mathrm{d}x};$	M1;
	When $x = 2 \mathrm{cm}$, $\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{0.016}{2 \pi}$	
	Hence, $\frac{dx}{dt} = 0.002546479$ (cm s ⁻¹) awrt 0.00255	A1 cso [4]
(b)	$V = \underline{\pi x^2(5x)} = \underline{5\pi x^3}$ $V = \underline{\pi x^2(5x)} \text{ or } \underline{5\pi x^3}$	B1
	$\frac{dV}{dx} = 15\pi x^{2}$ or ft from candidate's V in one variable	Β1√
	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = 15\pi x^2 \cdot \left(\frac{0.016}{\pi x}\right); \left\{= 0.24x\right\}$ Candidate's $\frac{\mathrm{d}V}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t};$	M1√
	When $x = 2 \text{ cm}$, $\frac{dV}{dt} = 0.24(2) = 0.48 \text{ (cm}^3 \text{ s}^{-1})$ $0.48 \text{ or } \underline{awrt \ 0.48}$	A1 cso
		[4]
		8 marks

edexcel

Jan 2009

Question Number	Scheme		Marks
5. (a)	Similar triangles $\Rightarrow \frac{r}{h} = \frac{16}{24} \Rightarrow r = \frac{2h}{3}$	Uses similar triangles, ratios or trigonometry to find either one of these two expressions oe.	M1
	$V = \frac{1}{3}\pi r^{2}h = \frac{1}{3}\pi \left(\frac{2h}{3}\right)^{2}h = \frac{4\pi h^{3}}{27} \mathbf{AG}$	Substitutes $r = \frac{2h}{3}$ into the formula for the volume of water <i>V</i> .	A1 [2]
(b)	From the question, $\frac{\mathrm{d}V}{\mathrm{d}t} = 8$	$\frac{\mathrm{d}V}{\mathrm{d}t} = 8$	B1
	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{12\pih^2}{27} = \frac{4\pih^2}{9}$	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{12\pih^2}{27} \text{ or } \frac{4\pih^2}{9}$	B1
	$\frac{dh}{dt} = \frac{dV}{dt} \div \frac{dV}{dh} = 8 \times \frac{9}{4\pi h^2} = \frac{18}{\pi h^2}$	Candidate's $\frac{dV}{dt} \div \frac{dV}{dh}$; $\frac{8 \div \left(\frac{12\pi h^2}{27}\right)}{27}$ or $\frac{8 \times \frac{9}{4\pi h^2}}{4\pi h^2}$ or $\frac{18}{\pi h^2}$ oe	
	When $h = 12$, $\frac{dh}{dt} = \frac{18}{\underline{144 \pi}} = \frac{1}{\underline{8\pi}}$	$\frac{18}{144\pi} \text{ or } \frac{1}{8\pi}$	A1 oe isw
			[5] 7 marks

Note the answer must be a one term exact value.		
Note, also you can ignore subsequent working after	$\frac{18}{144\pi}$	•

Jan 2010

Question Number	Scheme	Marks
Q6	$\frac{\mathrm{d}A}{\mathrm{d}t} = 1.5$	B1
	$A = \pi r^2 \implies \frac{\mathrm{d}A}{\mathrm{d}r} = 2\pi r$	B1
	When $A = 2$ $2 = \pi r^2 \implies r = \sqrt{\frac{2}{\pi}} (= 0.797884 \dots)$	M1
	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}t}$	
	$1.5 = 2\pi r \frac{\mathrm{d}r}{\mathrm{d}t}$	M1
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{1.5}{2\pi\sqrt{\frac{2}{\pi}}} \approx 0.299$ awrt 0.299	A1
		[5]

June 2011

Question Number	Scheme	Marks
3.	(a) $\frac{dV}{dh} = \frac{1}{2}\pi h - \pi h^2$ or equivalent	M1 A1
	At $h = 0.1$, $\frac{dV}{dh} = \frac{1}{2}\pi (0.1) - \pi (0.1)^2 = 0.04\pi$ $\frac{\pi}{25}$	M1 A1 (4)
	(b) $\frac{dh}{dt} = \frac{dV}{dt} \div \frac{dV}{dh} = \frac{\pi}{800} \times \frac{1}{\frac{1}{2}\pi h - \pi h^2} \qquad \text{or } \frac{\pi}{800} \div \text{ their (a)}$	M1
	At $h = 0.1$, $\frac{dh}{dt} = \frac{\pi}{800} \times \frac{25}{\pi} = \frac{1}{32}$ awrt 0.031	A1 (2)
		[6]

Question Number	Scheme		ks
2.	(a) $V = x^3 \implies \frac{dV}{dx} = 3x^2 $ * cso	B1	(1)
	(b) $\frac{dx}{dt} = \frac{dx}{dV} \times \frac{dV}{dt} = \frac{0.048}{3x^2}$ At $x = 8$	M1	
	At $x = 8$ $\frac{dx}{dt} = \frac{0.048}{3(8^2)} = 0.00025 \text{ (cm s}^{-1}\text{)}$ 2.5×10^{-4}	A1	(2)
	(c) $S = 6x^2 \implies \frac{\mathrm{d}S}{\mathrm{d}x} = 12x$	B1	
	$\frac{dS}{dt} = \frac{dS}{dx} \times \frac{dx}{dt} = 12x \left(\frac{0.048}{3x^2}\right)$ At $x = 8$	M1	
	$\frac{\mathrm{d}S}{\mathrm{d}t} = 0.024 \left(\mathrm{cm}^2 \mathrm{s}^{-1} \right)$	A1	(3)
			[6]

Question Number		Scheme	Marks
4.	$\frac{\mathrm{d}V}{\mathrm{d}t} = 1$	80π , $V = 4\pi h(h+4) = 4\pi h^2 + 16\pi h$,	
	dt		M1
		$\frac{\mathrm{d}V}{\mathrm{d}h} = 8\pi h + 16\pi \qquad \qquad \pm \alpha h \pm \beta, \ \alpha \neq 0, \ \beta \neq 0 \\ 8\pi h + 16\pi \qquad \qquad$	A1
	$\left\{\frac{\mathrm{d}V}{\mathrm{d}h}\right\}$	$\times \frac{dh}{dt} = \frac{dV}{dt} \Rightarrow \left\{ 8\pi h + 16\pi \right\} \frac{dh}{dt} = 80\pi \qquad \left(\text{Candidate's } \frac{dV}{dh} \right) \times \frac{dh}{dt} = 80\pi$	M1 oe
	$\left\{\frac{\mathrm{d}h}{\mathrm{d}t}\right\} =$	$= \frac{\mathrm{d}V}{\mathrm{d}t} \div \frac{\mathrm{d}V}{\mathrm{d}h} \Longrightarrow \left\{ \begin{array}{c} \frac{\mathrm{d}h}{\mathrm{d}t} = 80\pi \times \frac{1}{8\pi h + 16\pi} \end{array} \right. \qquad \text{or} 80\pi \div \text{Candidate's} \frac{\mathrm{d}V}{\mathrm{d}h}$	
	When	$h = 6, \left\{\frac{\mathrm{d}h}{\mathrm{d}t} = \right\} \frac{1}{8\pi(6) + 16\pi} \times 80\pi \left\{=\frac{80\pi}{64\pi}\right\}$ dependent on the previous M1 see notes	dM1
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \underline{1}$	1.25 or $\frac{5}{4}$ or $\frac{10}{8}$ or $\frac{80}{64}$	
			[5] 5
	Altern	native Method for the first M1A1	
	Droduc	et rule: $\begin{cases} u = 4\pi h & v = h + 4 \\ \frac{du}{dh} = 4\pi & \frac{dv}{dh} = 1 \end{cases}$	
	riouuc	$\frac{du}{dh} = 4\pi$ $\frac{dv}{dh} = 1$	
			M1
	$\frac{dh}{dh} =$	$4\pi(h+4) + 4\pi h \qquad \qquad \pm \alpha h \pm \beta, \ \alpha \neq 0, \ \beta \neq 0 \\ 4\pi(h+4) + 4\pi h \qquad $	A1
		Question 4 Notes	
	M1	An expression of the form $\pm \alpha h \pm \beta$, $\alpha \neq 0$, $\beta \neq 0$. Can be simplified or un-simplifie	d.
	A1	Correct simplified or un-simplified differentiation of V.	
	Noto	eg. $8\pi h + 16\pi$ or $4\pi(h+4) + 4\pi h$ or $8\pi(h+2)$ or equivalent.	(athod 1)
	Note	Some candidates will use the product rule to differentiate V with respect to h. (See Alt N dV	
	Note	$\frac{dv}{dh}$ does not have to be explicitly stated, but it should be clear that they are differentiating	ng their V.
	M1 $\begin{pmatrix} \text{Candidate's } \frac{dV}{dh} \end{pmatrix} \times \frac{dh}{dt} = 80\pi \text{ or } 80\pi \div \text{Candidate's } \frac{dV}{dh} \\ \text{Note} \text{Also allow } 2^{\text{nd}} \text{ M1 for } \left(\text{Candidate's } \frac{dV}{dh} \right) \times \frac{dh}{dt} = 80 \text{ or } 80 \div \text{Candidate's } \frac{dV}{dh} \\ \text{Note} \text{Give } 2^{\text{nd}} \text{ M0 for } \left(\text{Candidate's } \frac{dV}{dh} \right) \times \frac{dh}{dt} = 80\pi \text{t or } 80\pi t or $		
	dM1	which is dependent on the previous M1 mark.	
		Substitutes $h = 6$ into an expression which is a result of a quotient of their $\frac{dV}{dh}$ and 80π ((or 80)
	A1	1.25 or $\frac{5}{4}$ or $\frac{10}{8}$ or $\frac{80}{64}$ (units are not required).	
	Note	$\frac{80\pi}{64\pi}$ as a final answer is A0.	
	Note	Substituting $h = 6$ into a correct $\frac{dV}{dh}$ gives 64π but the final M1 mark can only be award	ded if this
		is used as a quotient with 80π (or 80)	