Inequalities and the Number Line
Four types of inequality

$$
\begin{aligned}
& x<6 \\
& x \leq 6 \\
& x>6 \\
& x \geqslant 6
\end{aligned}
$$

On a number line

$$
x<3
$$

$$
x \leq 4
$$

$$
x>-1
$$

$$
x \geqslant 0
$$

$$
-1 \leq x<2
$$

Algebraic Inequalities

Equation

$$
\begin{gathered}
2 x+3=11 \\
2 x=11-3 \\
2 x=8 \\
x=\frac{8}{2} \\
x=4
\end{gathered}
$$

Inequality

$$
\begin{aligned}
& 2 x+3<11 \\
& 2 x<11-3 \\
& 2 x<8 \\
& x<\frac{8}{2} \\
& x<4
\end{aligned}
$$

Note that solving a linear inequality is much the same as solving a linear equation. The answers is an inequality.

Note that if an inequality is multiplied os divided by a negative number the inequality sign is reversed

$$
\text { es } \begin{aligned}
-2 x & <6 \\
\Rightarrow \quad x & >\frac{6}{-2} \\
x & >-3
\end{aligned}
$$

Exercise
1)

$$
\begin{array}{lll}
3 x-7 \geqslant 17 & \text { 2) } & 5 x+1<31 \\
3 x \geqslant 17+7 & 5 x<31-1 \\
3 x \geqslant 24 & 5 x<30 \\
x \geqslant \frac{24}{3} & x<\frac{30}{5} \\
x \geqslant 8 & x<6
\end{array}
$$

3)

$$
\begin{gathered}
5 x-2 \geqslant 30-3 x \\
5 x+3 x \geqslant 30+2 \\
8 x \geqslant 32 \\
x \geqslant \frac{32}{8} \\
x \geqslant 4
\end{gathered}
$$

4)

$$
\begin{gathered}
3(x-1)<12 \\
3 x-3<12 \\
3 x<12+3 \\
3 x<15 \\
x<\frac{15}{3} \\
x<5
\end{gathered}
$$

Inequality Regions

Write down the three inequalities that define the shaded region.

$$
\begin{aligned}
& y \geqslant-2 \\
& y \leqslant \frac{1}{2} x+1 \\
& y \geqslant x
\end{aligned}
$$

