Leave blank

7. The lines l_1 and l_2 have equations

$$\mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} \alpha \\ -4 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix}.$$

If the lines l_1 and l_2 intersect, find

(a) the value of α ,

(4)

(b) an equation for the plane containing the lines l_1 and l_2 , giving your answer in the form ax + by + cz + d = 0, where a, b, c and d are constants.

(4)

For other values of α , the lines l_1 and l_2 do not intersect and are skew lines.

Given that $\alpha = 2$,

(c) find the shortest distance between the lines l_1 and l_2 .

(3)

a)
$$\underline{r}_1 = \begin{pmatrix} 1 - \lambda \\ -1 + 3\lambda \end{pmatrix}$$
 $\underline{r}_2 = \begin{pmatrix} \alpha \\ -4 + 3\mu \end{pmatrix}$ $\underline{r}_3 = \begin{pmatrix} \alpha \\ 2\mu \end{pmatrix}$

$$5u\sin(2)$$
 $-1+3\lambda = -4+3(1+2\lambda)$

$$\alpha = 1 - \lambda$$

$$\alpha = 1 - 0$$

$$\alpha = 1$$

blank

Question 7 continued

(5)

4

I to li and la

0

 $\begin{pmatrix} 5 \\ 6 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = 0$ $\begin{pmatrix} -4 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \end{pmatrix} + 4c = 0$

C=-35

+26

Sub in # -a + 35 - 65 =0

Q = -35

Plane -6x + 2y -3z +d =0

(1,-1,2)on plane -6(1) + 2(-1) - 3(2) + d = 0

-6 -2 -6 +d =0

d = 14

-62 + 2y - 32 + 14 = 0

The lines l_1 and l_2 have equations

$$\mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} \mathbf{2} \\ -4 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix}.$$

$$\begin{pmatrix} 1-\lambda \\ -1+3h \\ 2+4h \end{pmatrix}$$
 and
$$\begin{pmatrix} 2 \\ -4+3h \\ 2h \end{pmatrix}$$

$$\begin{array}{ll}
-5 \\
AB & = \\
-4 + 3\mu - (-1 + 3\lambda) \\
2\mu - (2 + 4\lambda)
\end{array} = \begin{pmatrix}
1 + \lambda \\
-3 + 3\mu - 3\lambda \\
-2 + 2\mu - 4\lambda
\end{pmatrix}$$

$$\begin{pmatrix} 1+\lambda \\ -3+3\mu-3\lambda \\ -2+2\mu-4\lambda \end{pmatrix} \begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix} = 0$$

$$\begin{pmatrix} 1+\lambda \\ -3+3\mu-3\lambda \\ -2+2\mu-\alpha\lambda \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix} = 0$$

$$-9 + 9m - 9h - 4 + 4m - 8h = 0$$

$$\lambda = -\frac{13}{49} \qquad \lambda = \frac{32}{49}$$

$$OR = \begin{pmatrix} \frac{2}{49} \\ -\frac{88}{49} \\ \frac{4}{49} \end{pmatrix} \qquad OR = \begin{pmatrix} \frac{2}{-\frac{100}{49}} \\ -\frac{100}{49} \\ \frac{64}{49} \end{pmatrix}$$

$$|AB| = \sqrt{(2-\frac{62}{49})^2 + (-\frac{100}{49} - \frac{88}{49})^2 + (\frac{64}{49} - \frac{44}{49})^2}$$

$$= \sqrt{(\frac{36}{49})^2 + (-\frac{12}{49})^2 + (\frac{18}{49})^2}$$

$$= \frac{4^2}{19}$$

Leave blank

7. The plane Π has vector equation

$$r = 3i + k + \lambda (-4i + j) + \mu (6i - 2j + k)$$

(a) Find an equation of Π in the form $\mathbf{r.n} = p$, where \mathbf{n} is a vector perpendicular to Π and p is a constant.

(5)

The point P has coordinates (6, 13, 5). The line l passes through P and is perpendicular to Π . The line l intersects Π at the point N.

(b) Show that the coordinates of N are (3, 1, -1).

(4)

The point R lies on Π and has coordinates (1,0,2).

(c) Find the perpendicular distance from N to the line PR. Give your answer to 3 significant figures.

(5)

uestion 7 continued	blar

Leave blank

6. The plane P has equation

$$\mathbf{r} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}$$

(a) Find a vector perpendicular to the plane P.

(2)

The line l passes through the point A(1, 3, 3) and meets P at (3, 1, 2).

The acute angle between the plane P and the line l is α .

(b) Find α to the nearest degree.

(4)

(c) Find the perpendicular distance from A to the plane P.

(4)

Question 6 continued	'	blan

Leave blank

3.	The position vectors of the points A , B and C relative to an origin O are $\mathbf{i} - 2\mathbf{j} - 2\mathbf{k}$, $7\mathbf{i} - 3\mathbf{k}$ and $4\mathbf{i} + 4\mathbf{j}$ respectively.	Ottilik
	Find	
	(a) $\overrightarrow{AC} \times \overrightarrow{BC}$, This is a vector product and not on Core Pure syllab (4)	us
	(b) the area of triangle ABC,	
	(2)	
	(c) an equation of the plane ABC in the form $\mathbf{r}.\mathbf{n}=p$ (2)	

Question 3 continued	bla
	—
	—