Work, energy and power Mixed exercise 2

1

$$
\begin{aligned}
\text { Power } & =F v \\
480 & =T \times 6 \\
T & =\frac{480}{6}=80
\end{aligned}
$$

Resolving parallel to the slope:

$$
\begin{aligned}
T & =R+70 g \sin 5^{\circ} \\
80 & =R+70 \times 9.8 \sin 5^{\circ} \\
R & =80-70 \times 9.8 \sin 5^{\circ} \\
R & =20.21 \ldots
\end{aligned}
$$

The magnitude of the resistance is 20.2 N (3 s.f.)
2 a P.E. gained by water and bucket $=m g h$

$$
\begin{aligned}
& =12 \times 9.8 \times 25 \\
& =2940
\end{aligned}
$$

Initial K.E. $=$ final K.E. $=0$
Work done by the boy = P.E. gained by bucket $=2940 \mathrm{~J}$
b Average rate of working $=\frac{\text { work done }}{\text { time taken }}=\frac{2940}{30}$

$$
=98
$$

The average rate of working of the boy is $98 \mathrm{~J} \mathrm{~s}^{-1}$ (or 98 W)
3

a K.E. lost by particle $=\frac{1}{2} \times 0.5 \times 12^{2}-\frac{1}{2} \times 0.5 \times 8^{2}$

$$
=20
$$

Work done by friction $=$ K.E. lost by particle
\therefore Work done by friction $=20 \mathrm{~J}$

3 b Resolving vertically: $R=0.5 g$
Friction is limiting:
$F=\mu R=\mu \times 0.5 g$
Work done by friction $=F \times s$

$$
\begin{aligned}
20 & =\mu \times 0.5 g \times 25 \\
\mu & =\frac{20}{0.5 g \times 25}=0.1632 \ldots
\end{aligned}
$$

The coefficient of friction is 0.163 (3 s.f.)
4

a Resolving perpendicular to the plane for A :
$R=2 m g \cos \theta$
Friction is limiting:

$$
\begin{align*}
& F=\mu R \\
& F=\frac{3}{8} \times 2 m g \cos \theta \\
&=\frac{3}{8} \times 2 m g \times \frac{4}{5} \\
&=\frac{3}{5} m g \\
& F=m a \text { for } A: \quad T-(F+2 m g \sin \theta)=2 m a \\
& T-\left(\frac{3}{5} m g+2 m g \times \frac{3}{5}\right)=2 m a \\
& T-\frac{9 m g}{5}=2 m a \tag{1}
\end{align*}
$$

$F=m a$ for $B: \quad 5 m g-T=5 m a$
$(1)+(2): \quad 5 m g-\frac{9 m g}{5}=7 m a$

$$
\begin{aligned}
\frac{16 m g}{5} & =7 m a \\
a & =\frac{16 g}{35}=\frac{16 \times 9.8}{35} \\
a & =4.48
\end{aligned}
$$

The initial acceleration of A is $4.48 \mathrm{~m} \mathrm{~s}^{-2}$

4 b For the first $1 \mathrm{~m} A$ travels
$u=0$
$a=4.48 \mathrm{~m} \mathrm{~s}^{-2}$
$s=1 \mathrm{~m}$
$v=$?
$v^{2}=u^{2}+2 a s$
$v^{2}=2 \times 4.48 \times 1$
$v^{2}=8.96$
After string breaks:
Loss of K.E. (of A) $=\frac{1}{2} m u^{2}-\frac{1}{2} m v^{2}$

$$
\begin{aligned}
& =\frac{1}{2} \times 2 \mathrm{~m} \times 8.96-0 \\
& =8.96 \mathrm{~m}
\end{aligned}
$$

Gain of P.E. $($ of A) $=m g h$

$$
\begin{aligned}
& =2 m g \times(x \sin \theta) \\
& =2 m g \times x \times \frac{3}{5} \\
& =\frac{6 m g x}{5}
\end{aligned}
$$

where x is the distance moved up the plane.
Work done by friction $=\frac{3 m g}{5} \times x$
Work-energy principle:

$$
\begin{aligned}
\frac{3 m g x}{5}+\frac{6 m g x}{5} & =8.96 m \\
\frac{9 g x}{5} & =8.96 \\
x & =\frac{8.96 \times 5}{9 \times 9.8} \\
x & =0.5079 \ldots
\end{aligned}
$$

Total distance moved $=1+0.5079 \ldots$

$$
=1.51
$$

The total distance moved by A before it first comes to rest is 1.51 m (3 s.f.)

5 a

$$
\longrightarrow 15 \mathrm{~m} \mathrm{~s}^{-1} \quad \longrightarrow a \mathrm{~m} \mathrm{~s}^{-2}
$$

\qquad

Power $=F v$
$16000=T \times 15$

$$
T=\frac{16000}{15}
$$

Using $F=m a$:
$T-500=800 a$
$\frac{16000}{15}-500=800 a$
$a=\frac{\frac{16000}{15}-500}{800}$
$a=0.7083 \ldots$
The acceleration is $0.708 \mathrm{~m} \mathrm{~s}^{-2}$
b

Power $=F v$

$$
\begin{aligned}
24000 & =T^{\prime} \times 15 \\
T^{\prime} & =\frac{24000}{15}
\end{aligned}
$$

Resolving parallel to the slope and using $F=m a$:

$$
\begin{aligned}
T^{\prime}-500-800 g \sin 5^{\circ} & =800 a^{\prime} \\
\frac{24000}{15}-500-800 \times 9.8 \sin 5^{\circ} & =800 a^{\prime} \\
800 a^{\prime} & =416.698 \ldots \\
a^{\prime} & =0.5208 \ldots
\end{aligned}
$$

The new acceleration is $0.521 \mathrm{~m} \mathrm{~s}^{-2}$ (3 s.f.)

6 a

$\tan \theta=\frac{1}{20} \quad$ so $\quad \theta=2.8624^{\circ}$
Resolving parallel to the slope:

$$
\begin{aligned}
T+750 g \sin \theta & =1000 \\
T & =1000-750 \times 9.8 \sin 2.8624^{\circ} \\
T & =632.95
\end{aligned}
$$

Power $=F v$

$$
\begin{aligned}
& =632.95 \times 18 \\
& =11393.2 \ldots
\end{aligned}
$$

The rate of working of the car's engine is 11.4 kW (3 s.f.)
b

The tractive force is zero.
Resolving parallel to the slope and using $F=m a$:
$1000-750 \times 9.8 \times \sin \theta=750 a$
$a=\frac{1000-750 \times 9.8 \sin 2.8624^{\circ}}{750}$
$a=0.8439$
Consider motion down the slope:
$a=-0.8439 \mathrm{~m} \mathrm{~s}^{-2}, u=18 \mathrm{~m} \mathrm{~s}^{-1}, v=0 \mathrm{~m} \mathrm{~s}^{-1}, t=$?
$v=u+a t$
$0=18-0.8439 \times t$
$t=\frac{18}{0.8439}$
$t=21.32 \ldots$
The value of t is 21.3 (3 s.f.)

7

a P.E. gained by $A=m g h$

$$
\begin{aligned}
& =2 m g \times(s \times \sin \theta) \\
& =2 m g \times s \times \frac{3}{5} \\
& =\frac{6 m g s}{5}
\end{aligned}
$$

P.E. lost by $B=m g h$

$$
=3 \mathrm{mgs}
$$

\therefore P.E. lost by system $=3 m g s-\frac{6 m g s}{5}=\frac{9 m g s}{5}$

7 b Consider A :
Find the frictional force and use the
Resolving perpendicular to the slope:

$$
\begin{aligned}
R & =2 m g \cos \theta \\
& =2 m g \times \frac{4}{5} \\
& =\frac{8 m g}{5}
\end{aligned}
$$

Friction is limiting:

$$
\begin{aligned}
F & =\mu R \\
& =\frac{1}{4} \times \frac{8 m g}{5} \\
& =\frac{2 m g}{5}
\end{aligned}
$$

Work done against friction $=F s$

$$
=\frac{2 m g s}{5}
$$

K.E. gained by A and $B=\frac{1}{2}(2 m) v^{2}+\frac{1}{2}(3 m) v^{2}$

$$
=\frac{5 m v^{2}}{2}
$$

Work-energy principle:
K.E. gained + work done against friction $=$ P.E. lost

$$
\begin{aligned}
\frac{5 m v^{2}}{2}+\frac{2 m g s}{5} & =\frac{9 m g s}{5} \\
\frac{5 m v^{2}}{2} & =\frac{7 m g s}{5} \\
v^{2} & =\frac{2 \times 7 m g s}{5 \times 5 m} \\
v^{2} & =\frac{14 g s}{25}
\end{aligned}
$$

8 a

Resolving parallel to the slope and using $F=m a$:
$5 g \sin 25^{\circ}-F=5 a$
Friction is limiting:
$F=\mu R$
$F=0.3 \times 5 g \cos 25^{\circ}$
So $5 g \sin 25^{\circ}-5 \times 0.3 \times g \cos 25^{\circ}=5 a$

$$
a=g\left(\sin 25^{\circ}-0.3 \cos 25^{\circ}\right)
$$

Consider the motion down the slope.

$$
\begin{aligned}
u & =0 \text { and } t=2 \\
v & =u+a t \\
& =0+2 g\left(\sin 25^{\circ}-0.3 \cos 25^{\circ}\right) \\
& =2 g\left(\sin 25^{\circ}-0.3 \cos 25^{\circ}\right) \\
& =2.9542 \ldots
\end{aligned}
$$

After it has been moving for 2 s the parcel has speed $2.95 \mathrm{~m} \mathrm{~s}^{-1}$ (3 s.f.)
b In 2 s the parcel slides a distance $s \mathrm{~m}$ down the sloping platform.
Loss of P.E. $=m g h$

$$
\begin{aligned}
& =m g \times s \sin 25^{\circ} \\
& =5 g \times s \sin 25^{\circ}
\end{aligned}
$$

$u=0, v=2.954 \mathrm{~m} \mathrm{~s}^{-1}, t=2 \mathrm{~s}$
Using $s=\frac{u+v}{2} \times t$

$$
s=\frac{0+2.954}{2} \times 2=2.954
$$

So, loss of P.E. $=5 g \times 2.954 \times \sin 25^{\circ}$

$$
\begin{aligned}
& =5 \times 9.8 \times 2.954 \times \sin 25^{\circ} \\
& =61.17 \ldots
\end{aligned}
$$

During the 2 s , the parcel loses 61.2 J of kinetic energy (3 s.f.)

9

$2000 \mathrm{~kg} \longrightarrow T$

Power $=4000 \mathrm{~W}$
Power $=T v=10 T$
So $T=\frac{4000}{10}=400 \mathrm{~N}$
Using $F=m a$:
$T=2000 \times a$
$400=2000 a$
So $a=\frac{400}{2000}=0.2 \mathrm{~m} \mathrm{~s}^{-2}$
10

Resolving parallel to the slope:
$T=200000+16000 g \sin 12^{\circ}$
$T=232600.5 \cdots$
Work done in $10 s=$ force \times distance moved

$$
\begin{aligned}
& =232600 \ldots \times(14 \times 10) \\
& =32564000(3 \text { s.f. })
\end{aligned}
$$

The work done in 10s is 32600000 J (or 32600 kJ) (3 s.f.)

11

a K.E. gained $=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}$

$$
\begin{aligned}
& =\frac{1}{2} \times 0.3 \times 12^{2}-\frac{1}{2} \times 0.3 \times 6^{2} \\
& =16.2
\end{aligned}
$$

The K.E. gained is 16.2 J
b The work done by the force is 16.2 J
c Work done $=F s$

$$
\begin{aligned}
16.2 & =F \times 4 \\
F & =\frac{16.2}{4} \\
F & =4.05
\end{aligned}
$$

The force has magnitude 4.05 N
$12 \longrightarrow 10 \mathrm{~m} \mathrm{~s}^{-1} \longrightarrow 0 \mathrm{~ms}^{-1}$

a K.E. lost $=\frac{1}{2} m u^{2}-\frac{1}{2} m v^{2}$

$$
\begin{aligned}
& =\frac{1}{2} \times 5 \times 10^{2}-0 \\
& =250
\end{aligned}
$$

The K.E. lost is 250 J
b Work done against friction $=250 \mathrm{~J}$

$$
\begin{aligned}
\text { Work done } & =F s \\
250 & =F \times 8 \\
F & =\frac{250}{8}
\end{aligned}
$$

Resolving perpendicular to the slope: $R=5 g$
Friction is limiting: $F=\mu R$

$$
\begin{aligned}
\frac{250}{8} & =\mu \times 5 g \\
\mu & =\frac{250}{8 \times 5 g}
\end{aligned}
$$

The coefficient of friction is 0.638 (3 s.f.)

13 $\longrightarrow 20 \mathrm{~m} \mathrm{~s}^{-1} \longrightarrow 0.3 \mathrm{~m} \mathrm{~s}^{-2}$
\qquad
a Power $=F v$
$15000=T \times 20$

$$
T=\frac{15000}{20}=750
$$

Using $F=m a$:
$T-R=900 \times 0.3$
$750-R=270$
$R=750-270$
$R=480$
The magnitude of the resistance is 480 N
b

Resolving along the slope and using $F=m a$:
$T^{\prime}+900 g \sin 4^{\circ}-480=900 \times 0.5$

$$
T^{\prime}=450+480-900 g \sin 4^{\circ}
$$

Power $=F v$

$$
\begin{aligned}
8000 & =\left(450+480-900 g \sin 4^{\circ}\right) v \\
v & =\frac{8000}{\left(450+480-900 g \sin 4^{\circ}\right)} \\
v & =25.41 \ldots
\end{aligned}
$$

The speed of the car is $25.4 \mathrm{~m} \mathrm{~s}^{-1}$ (3 s.f.)

14

Power $=F v$
Power $=4000 \mathrm{~W}$
$T=\frac{4000}{v}$
Resolving along the slope and using $F=m a$:

$$
\begin{aligned}
& \frac{4000}{v}-7000 g \sin 10^{\circ}=7000 \times 2 \\
& \frac{4000}{v}=25912
\end{aligned}
$$

So $v=\frac{4000}{25912}=0.154 \ldots$
The speed of the bus is $0.15 \mathrm{~m} \mathrm{~s}^{-1}$ (2 s.f.)

15

$\mu=\frac{3}{8}$
a Resolving perpendicular to the floor:

$$
\begin{aligned}
R+75 \sin 15^{\circ} & =4 g \\
R & =4 g-75 \sin 15^{\circ}
\end{aligned}
$$

Friction is limiting: $F=\mu R$

$$
\begin{aligned}
& F=\frac{3}{8} \times\left(4 \times 9.8-75 \sin 15^{\circ}\right) \\
& F=7.420 \ldots
\end{aligned}
$$

The magnitude of the frictional force is 7.42 N (3 s.f.)
b Work done $=F s$

$$
\begin{aligned}
& =75 \cos 15^{\circ} \times 6 \\
& =434.66 \ldots
\end{aligned}
$$

The work done is 435 J (3 s.f.)

15 c Using the work-energy principle:
K.E. gained $=$ work done by tension - work done against friction

$$
\begin{aligned}
\frac{1}{2} \times 4 v^{2} & =434.66-7.420 \times 6 \\
v^{2} & =\frac{1}{2}(434.66-7.420 \times 6) \\
v & =13.96 \ldots
\end{aligned}
$$

The block is moving at $14.0 \mathrm{~m} \mathrm{~s}^{-1}$ (3 s.f.)

16 a

$$
\longrightarrow \mathrm{m} \mathrm{~s}^{-1} \quad \longrightarrow 0 \mathrm{~m} \mathrm{~s}^{-2}
$$

\qquad 1800 kg $>T$

At maximum speed, $a=0$
Resolving along the road and using $F=m a$:

$$
\begin{aligned}
T-600 & =0 \\
T & =600
\end{aligned}
$$

Power $=F v$
$20000=600 \nu$
$v=\frac{20000}{600}$
$v=33.33$
The lorry's maximum speed is $33.3 \mathrm{~m} \mathrm{~s}^{-1}$ (3 s.f.)
b

$$
\longrightarrow 20 \mathrm{~m} \mathrm{~s}^{-1} \quad \longrightarrow a \mathrm{~m} \mathrm{~s}^{-2}
$$

$$
600 \mathrm{~N} \longleftarrow 1800 \mathrm{~kg} \longrightarrow T^{\prime}
$$

$$
\text { Power }=F v
$$

$$
20000=T^{\prime} \times 20
$$

$$
T^{\prime}=1000
$$

Using $F=m a$:
$T^{\prime}-600=1800 a$
$1000-600=1800 a$
$a=\frac{400}{1800}$
$a=0.2222 \ldots$
The acceleration of the lorry is $0.222 \mathrm{~m} \mathrm{~s}^{-2}$ (3 s.f.)

17 \qquad

a Resolving along the road: $T=600$

$$
\begin{aligned}
\text { Power } & =F v \\
& =600 \times 20 \\
& =12000 \mathrm{~W} \\
& =12 \mathrm{~kW}
\end{aligned}
$$

The power is 12 kW
b

$$
\longrightarrow 20 \mathrm{~m} \mathrm{~s}^{-1} \longrightarrow 0.5 \mathrm{~m} \mathrm{~s}^{-2}
$$

$$
F=m a
$$

$$
\begin{aligned}
T^{\prime}-600 & =1200 \times 0.5 \\
T^{\prime} & =600+600 \\
T^{\prime} & =1200
\end{aligned}
$$

$$
\text { Power }=F \times v
$$

$$
\begin{aligned}
& =1200 \times 20 \\
& =24000
\end{aligned}
$$

The new rate of working is 24 kW
c

Resolving along the slope:
$T^{\prime \prime}=600+1200 g \sin 20^{\circ}$
Power $=F v$
$50000=\left(600+1200 g \sin 20^{\circ}\right) v$

$$
\begin{aligned}
v & =\frac{50000}{\left(600+1200 g \sin 20^{\circ}\right)} \\
v & =10.82 \ldots
\end{aligned}
$$

The value of v is 10.8 (3.s.f.)

18

a Applying $F=m a$ vertically downwards:
$0.001 g-0.01 v^{2}=0.001 a$
When $v=0.5$:
$0.001 \times 9.8-0.01 \times 0.5^{2}=0.001 a$
$0.0073=0.001 a$
So $a=\frac{0.0073}{0.001}=7.3 \mathrm{~m} \mathrm{~s}^{-2}$
b At the maximum velocity, the resultant force is zero.

$$
\begin{aligned}
& \text { So } 0.001 g=0.01 v^{2} \\
& \begin{aligned}
\frac{0.001 \times 9.8}{0.01} & =v^{2} \\
\text { So } v^{2} & =0.98 \\
\text { So } v & =\sqrt{0.98}=0.99 \mathrm{~m} \mathrm{~s}^{-1}(2 \text { s.f. })
\end{aligned}
\end{aligned}
$$

19

a Applying $F=m a$ down the plane:
$1 g \sin 30^{\circ}-k v=1 a$
When $v=1$:
$9.8 \sin 30^{\circ}-k=a$
So $a=(4.9-k) \mathrm{m} \mathrm{s}^{-2}$
b At the maximum velocity, forces parallel to the plane are in equilibrium.
So $1 g \sin 30^{\circ}=k v$
$1 g \sin 30^{\circ}=5 k$

$$
\text { So } k=\frac{g \sin 30^{\circ}}{5}=0.98
$$

Challenge

a Car is moving with constant speed in a direction along the tangent to the cylinder. Resolving along the path of the car:
$T=3000 g \sin \theta$
Power $=T v$
Power $=3000 g \sin \theta \times 20=60000 g \sin \theta=588000 \sin \theta \mathrm{~W}$
b When $\theta=0^{\circ}$, there is no force to act against, so no power is required. When $\theta=90^{\circ}$, maximum power is needed.

