Divisibility Tests by Induction
Ex Prove by induction
$n^{3}-7 n+9$ is divisible by 3 for all tue integers

$$
n=1 \quad 1^{3}-7(1)+9=3 \quad \text { divisible by } 3
$$

Assume terse for $n=K$

$$
\therefore \quad k^{3}-7 k+9=3 h
$$

for some integer h

Consider $n=K+1$
then $(k+1)^{3}-7(k+1)+9$

$$
\begin{aligned}
& =k^{3}+3 k^{2}+3 k+1-7 k-7+9 \\
& =k^{3}-7 k+9+3 k^{2}+3 k-7+1 \\
& =3 h+3 k^{2}+3 k-6 \\
& =3\left(h+k^{2}+k-2\right)
\end{aligned}
$$

which is divisible by 3 since 3 is a factor
\therefore if formula true for $n=k$, also true for $n=r+1$. Since true for $u=1$, by moshematicurl induction it is true for all positive integer n

Exercise 8B
6) Prove $2^{6 n}+3^{2 n-2}$ is divisible by 5

$$
n=1 \quad 2^{6}+3^{0}=64+1=65 \text { derisible by } 5
$$

True for $n=1$
Assume five for $n=K$
then $2^{6 k}+3^{2 k-2}=5 h$ for some integuch

Consider $n=k+1$

$$
\begin{aligned}
& 2^{6(k+1)}+3^{2(x+6)-2} \\
&= 2^{6 k} \times 2^{6}+3^{2 k+2-2} \\
&=64 \times 2^{6 k}+3^{2} \times 3^{2 k-2} \\
&=64 \times 2^{6 k}+9 \times 3^{2 k-2} \\
&=55 \times 2^{6 k}+9\left(2^{6 k}+3^{2 k-2}\right) \\
&=55 \times 2^{6 k}+9(5 h) \\
&=5\left(11 \times 2^{6 k}+9 h\right)
\end{aligned}
$$

note

$$
\left(11 \times 2^{\text {Note }}+9 h\right)
$$

is an integer

Drusisble by 5 since 5 is a fetor
\therefore if true for $n=k$, fore for $n=k+1$ etc
4) Prove $8^{n}-3^{n}$ divisible 5 for all positive integers n

$$
n=1 \quad 8^{\prime}-3^{\prime}=8-3=5_{\text {divisible } 5,5}
$$

Assume true for $n=k$
then $8^{k}-3^{k}=5 h$ for sore integer h
Corsder $n=K+1$

$$
\begin{aligned}
8^{k+1}-3^{k+1}= & 8 \times 8^{k}-3 \times 3^{k} \\
= & 5 \times 8^{k}+3 \times 8^{k}-3 \times 3^{k} \\
= & 5 \times 8^{k}+3\left(8^{k}-3^{k}\right) \\
= & 5 \times 8^{k}+3(5 h) \\
= & 5\left(8^{k}+3 h\right) \\
& \text { div.sisk } b_{7} 5
\end{aligned}
$$

\therefore if true for $n=K$ a yo true fore $n=k+1$ etc

Hawk: Spend an hows on Exercise 8B

