Probability and Venn Diagrams

A
$\operatorname{not} A$

$$
P(A \cap B)
$$

Intersection
A and B are independent if and only if

$$
P(A \cap B)=P(A) \times P(B)
$$

Union

$$
\begin{aligned}
& P(A \cup B) \\
= & P(A)+P(B)-P(A \cap B)
\end{aligned}
$$

Note that if A and B are mutually exclusive (ie. do not overlap)
then $P(A \cup B)=P(A)+P(B)$
Conditional Probability

$$
P(A \backslash B)=\frac{P(A \cap B)}{P(B)}
$$

Roll a Dice
A even number $\{2,4,6\}$
B number $>3\{4,5,6\}$

$$
P(A \backslash B)=\frac{P(A \cap B)}{P(B)}=\frac{\frac{2}{6}}{\frac{3}{6}}=\frac{2}{6} \times \frac{6}{3}=\frac{2}{3}
$$

C odd number $\{1,3,5\}$

$$
P(C, B)=\frac{P(C \cap B)}{P(B)}=\frac{\frac{1}{6}}{\frac{3}{6}}=\frac{1}{6} \times \frac{6}{3}=\frac{1}{3}
$$

JAN 2012 Q6
6. The following shows the results of a survey on the types of exercise taken by a group of 100 people.

> 65 run
> 48 swim
> 60 cycle
> 40 run and swim
> 30 swim and cycle
> 35 run and cycle
> 25 do all three

(a) Draw a Venn Diagram to represent these data.

Find the probability that a randomly selected person from the survey
(b) takes none of these types of exercise,
(c) swims but does not run,
(d) takes at least two of these types of exercise.

Jason is one of the above group.
Given that Jason runs,
(e) find the probability that he swims but does not cycle.

b) $P($ None $)=\frac{7}{100}$
c) $P\left(S \cap R^{\prime}\right)=\frac{5+3}{100}=\frac{8}{100}$
d) $P(A \notin$ least 2 $)=\frac{15+10+5+25}{100}=\frac{55}{100}$
e) $P($ suinnot cycle I runs $)=\frac{15}{65}$

Coin Dice

H_{1}	$T 1$	
H_{2}	$T 2$	
$H 3$	$T 3$	$P(H \cap 5)=\frac{1}{12}$
$H 4$	$T 4$	
$H 5$	$T 5$	
$H 6$	$T 6$	

$$
\begin{array}{r}
P(H)=\frac{1}{2} \quad P(5)=\frac{1}{6} \\
\frac{1}{2} \times \frac{1}{6}=\frac{1}{12}
\end{array}
$$

4 suits $\begin{gathered}H \\ \\ \operatorname{Red}\end{gathered} \underset{\text { Bact }}{ }$

$$
A=3 \& \ldots 10>Q K
$$

$$
\begin{gathered}
P(\text { Diamond })=\frac{13}{52}=\frac{1}{4} \\
P\left(Q_{\text {ween }}\right)=\frac{42}{52}=\frac{1}{13} \\
P(\text { Red })=\frac{26}{52}=\frac{1}{2} \\
P\left(D_{\operatorname{man}}\right) \times P\left(Q_{\text {oren }}\right)=\frac{1}{4} \times \frac{1}{13}=\frac{1}{52} \\
P(D n Q)=\frac{1}{52}
\end{gathered}
$$

Conditional Probability
Roll a Dice

$$
\begin{aligned}
& A=\text { even number }=\{2,4,6\} \\
& B=\text { number }>3=\{4,5,6\}
\end{aligned}
$$

$$
P(A \backslash B)=\frac{P(A \wedge B)}{P(B)}=\frac{\frac{2}{6}}{\frac{3}{6}}=\frac{2}{6} \times \frac{6}{3}=\frac{2}{3}
$$

$C=$ odd number $\{1,3,5\}$

$$
P(C \backslash B)=\frac{P(C \cap B)}{P(B)}=\frac{\frac{1}{6}}{\frac{3}{6}}=\frac{1}{6} \times \frac{6}{3}=\frac{1}{3}
$$

Suppose A and B are independent then $P(A, B)=P(A) \times P(B)$

In which case $P(A \backslash B)=\frac{P(A \cap B)}{P(B)}$

$$
\begin{aligned}
& =\frac{P(A) \times P(B)}{P(B} \\
& =P(A)
\end{aligned}
$$

So $P(A)$ is unaffected by the fact B has happened

Exercise 5B
7)

$$
\begin{gathered}
P(m)=P(P) \\
\Rightarrow 0.32+P=p+q+0.07 \\
0.32-0.07=q \\
q=0.25 \\
0.32+p+0.25+0.07+0.13+0.1=1 \\
p=0.13
\end{gathered}
$$

