Leave

blank

7. R_{α} $A = \frac{3}{\sqrt{8}}$ $Sin d = \frac{3}{\sqrt{8}}$ $Cosa = \frac{3}{\sqrt{100}}$ $Cosa = \frac{3}{\sqrt{100}}$

A uniform plank AB, of weight 100 N and length 4 m, rests in equilibrium with the end A on rough horizontal ground. The plank rests on a smooth cylindrical drum. The drum is fixed to the ground and cannot move. The point of contact between the plank and the drum is C, where AC=3 m, as shown in Figure 4. The plank is resting in a vertical plane which is perpendicular to the axis of the drum, at an angle α to the horizontal, where $\sin \alpha = \frac{1}{3}$. The coefficient of friction between the plank and the ground is μ . Modelling the plank as a rod, find the least possible value of μ .

Figure 4

(10)

$$R_A + R_C \cos \alpha = 100$$

$$R_A + \sqrt{8} R_C = 100$$

$$\mu R_A = R_c sind$$

$$\mu R_A = I R_c$$

$$100 \times 2 \cos \alpha = R_{c} \times 3$$

$$\frac{200 \sqrt{8}}{3} = 3 R_{c}$$

Sub for Re in 2

Sub for Re in 1

$$R_A + \frac{18}{3} \times \frac{20058}{9} = 100$$

$$RA + \frac{1600}{27} = 100$$

$$RA = 100 - \frac{1600}{27} = \frac{1100}{27}$$

Sub for RA in 4

$$\mu \times \frac{1100}{27} = \frac{20058}{27}$$

$$M = \frac{200 \sqrt{8}}{27} \times \frac{27}{1100}$$

$$\mu = \frac{200 \sqrt{8}}{1100} = \frac{2\sqrt{8}}{11} = 0.514$$

M 7 0.514