Proof Exercise 7D

1) $\quad n^{2}-n=n(n-1)$

If n is an integer either n or $n-1$ is even
$\therefore n^{2}-n$ has a factor of 2 and so is even
3) Prove $(x+\sqrt{y})(x-\sqrt{y}) \equiv x^{2}-y$

$$
\begin{aligned}
(x+5 y)(x-\sqrt{y}) & \equiv x^{2}+x \sqrt{y}-x \sqrt{y}-y \\
& \equiv x^{2}-y
\end{aligned}
$$

5) Prove $x^{2}+b x \equiv\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}$

$$
\begin{aligned}
\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2} & \equiv x^{2}+2 x \frac{b}{2}+\left(\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2} \\
& \equiv x^{2}+b x
\end{aligned}
$$

7) Prove $\left(x-\frac{2}{x}\right)^{3} \equiv x^{3}-6 x+\frac{12}{x}-\frac{8}{x^{3}}$

$$
\begin{aligned}
&\left(x-\frac{2}{x}\right)^{2}\left(x-\frac{2}{x}\right) \equiv\left(x^{2}-2 x \cdot \frac{2}{x}+\frac{4}{x^{2}}\right)\left(x-\frac{2}{x}\right) \\
& \equiv\left(x^{2}-4+\frac{4}{x^{2}}\right)\left(x-\frac{2}{x}\right) \\
& \equiv x^{3}-4 x+\frac{4}{x} \\
&-2 x+\frac{8}{x}-\frac{8}{x^{3}} \\
& \equiv x^{3}-6 x+\frac{12}{x}-\frac{8}{x^{3}}
\end{aligned}
$$

a) Prove $3 n^{2}-4 n+10$ is positive for all n

$$
\begin{aligned}
& \equiv 3\left[n^{2}-\frac{4}{3} n+\frac{10}{3}\right] \\
& \equiv 3\left[\left(n-\frac{2}{3}\right)^{2}+\frac{10}{3}-\frac{4}{9}\right] \\
& \equiv 3\left(n-\frac{2}{3}\right)^{2}+10-\frac{4}{3} \\
& \equiv 3\left(n-\frac{2}{3}\right)^{2}+\frac{26}{3} \geqslant \frac{26}{3} \quad \text { since }\left(n-\frac{2}{3}\right)^{2} \geqslant 0
\end{aligned}
$$

$\therefore 3 n^{2}-4 n+10$ is positive for all n
11) Prove $x^{2}+8 x+20 \geqslant 4$ for a $11 x$

$$
\begin{aligned}
& x^{2}+8 x+20 \equiv(x+4)^{2}+20-16 \\
& \equiv(x+4)^{2}+4 \\
& \geqslant 4 \text { since }(x+4)^{2} \geqslant 0 \\
& \therefore x^{2}+8 x+20 \geqslant 4 \text { for all } x
\end{aligned}
$$

13) $p x^{2}-5 x-6=0$ has 2 distinct roots

$$
\begin{aligned}
\Rightarrow b^{2} & >4 a c \\
\Rightarrow(-5)^{2} & >4 p(-6) \\
25 & >-24 p \\
24 p & >-25 \\
p & >-\frac{25}{24}
\end{aligned}
$$

15) Prove $A(1,1)$
$B(2, a)$
$C(6,5)$
D $(5,2)$ form a parallelogram

Gradient $A B=\frac{4-1}{2-1}=\frac{3}{1}=3$
Gradient $C D=\frac{5-2}{6-5}=\frac{3}{1}=3$
$\therefore A B$ and $C D$ are parallel
Gradient $B C=\frac{5-4}{6-2}=\frac{1}{4}$
Grudient $A D=\frac{2-1}{5-1}=\frac{1}{4}$
$\therefore B C$ and AJ are parallel
Two pairs of parallel sides \therefore ABCD is a parallelogram
17)

$$
\begin{aligned}
& A(-5,2) \\
& B(-3,-4) \\
& C(3,-2)
\end{aligned}
$$

$$
\begin{aligned}
\text { Gradient } A B & =\frac{2--4}{-5--3} \\
& =\frac{6}{-2}=-3
\end{aligned}
$$

Gradient $B C=\frac{-4--2}{-3-3}=\frac{-2}{-6}=+\frac{1}{3}$
$-7 \times \frac{1}{3}=-1 \quad \therefore A B$ and $B C$ are 1

$$
\angle A B C=90^{\circ}
$$

$$
\begin{aligned}
& |A B|=\sqrt{(-5--3)^{2}+(2--4)^{2}}=\sqrt{4+36}=\sqrt{40} \\
& |B C|=\sqrt{(3--3)^{2}+(-2--4)^{2}}=\sqrt{36+4}=\sqrt{40}
\end{aligned}
$$

$$
\therefore|A B|=|B C|
$$

Triangle is right-angled and isosceles
19) Prove $4 y-3 x+26=0$ (1)
is a tangent to circle $(x+4)^{2}+(y-3)^{2}=100$ (2)
From (1) $4 y=3 x-26$

$$
y=\frac{3 x-26}{4}
$$

Sub in (2)

$$
\begin{aligned}
& (x+4)^{2}+\left(\frac{3 x-26}{4}-3\right)^{2}=100 \\
& (x+4)^{2}+\left(\frac{3 x-38}{4}\right)^{2}=100 \\
& x^{2}+8 x+16+\frac{9 x^{2}-228 x+1444}{16}=100 \\
& 16 x^{2}+128 x+256+9 x^{2}-228 x+1444=1600 \\
& 25 x^{2}-100 x+100=0 \\
& x^{2}-4 x+4=0 \\
& (x-2)^{2}=0
\end{aligned}
$$

only 1 root $x=2 \Rightarrow y=-5$
Line and circle intersect only at $(2,-5)$
\therefore line is range t to circle

Homework Exercise 70 even numbers

