Leave	
blank	

Solve the equation	
$7\mathrm{sech}\ x - \tanh\ x = 5$	
Give your answers in the form $\ln a$ where a is a rational number.	(5)

Leave blank

- **4.** Given that $y = \operatorname{arsinh}(\sqrt{x}), x > 0$,
 - (a) find $\frac{dy}{dx}$, giving your answer as a simplified fraction.

(3)

(b) Hence, or otherwise, find

$$\int_{\frac{1}{4}}^{4} \frac{1}{\sqrt{[x(x+1)]}} dx,$$

giving your answer in the form $\ln\left(\frac{a+b\sqrt{5}}{2}\right)$, where a and b are integers.

(6)

3.	(a)	Starting from the definitions of $\sinh x$ and $\cosh x$ in terms of exponentials, prothat $\cosh 2x = 1 + 2\sinh^2 x$	ove
			(3)
	(b)	Solve the equation	
	(0)	$\cosh 2x - 3\sinh x = 15,$	
		giving your answers as exact logarithms.	
			(5)

Leave blank

5. Given that $y = (\operatorname{arcosh} 3x)^2$, where 3x > 1, show that

(a)	$(9x^2 - 1)\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 36$	iy,	
	(ax)		(5)

(b)
$$(9x^2 - 1)\frac{d^2y}{dx^2} + 9x\frac{dy}{dx} = 18$$
. (4)

Leave blank

- 5. The curve C_1 has equation $y = 3 \sinh 2x$, and the curve C_2 has equation $y = 13 3e^{2x}$.
 - (a) Sketch the graph of the curves C_1 and C_2 on one set of axes, giving the equation of any asymptote and the coordinates of points where the curves cross the axes.

(4)

(b) Solve the equation $3 \sinh 2x = 13 - 3e^{2x}$, giving your answer in the form $\frac{1}{2} \ln k$, where k is an integer.

(5)

Question 5 continued	blank

Leave

	1
5. (a) Differentiate x arsinh $2x$ with respect to x .	(3)
(b) Hence, or otherwise, find the exact value of	
$\int_0^{\sqrt{2}} \operatorname{arsinh} 2x dx$	
J_0	
giving your answer in the form $A \ln B + C$, where A , B and C are real.	(7)
	(7)

		_
		-
		-
		-
		_
		-
		-
		-
		_
		_
		-
		_
		-
		_
		_
		-
		_
		-
		_
		_
		_
		-
		-
		_
		_
		-
		-

Leave blank

7	f(x) $f(x)$ $f(x)$ $f(x)$	TD
/·	$f(x) = 5 \cosh x - 4 \sinh x$	$x \in \mathbb{R}$

(a) Show that
$$f(x) = \frac{1}{2} (e^x + 9e^{-x})$$

(2)

Hence

(b) solve
$$f(x) = 5$$

(4)

(c) show that
$$\int_{\frac{1}{2}\ln 3}^{\ln 3} \frac{1}{5\cosh x - 4\sinh x} dx = \frac{\pi}{18}$$

(5)

