Leave blank

6. The function f is defined by

 $f: x \to e^{2x} + k^2$, $x \in \mathbb{R}$, k is a positive constant.

(a) State the range of f.

$$f(x) > k^2$$

(b) Find f^{-1} and state its domain.

(3)

The function g is defined by

$$g: x \to \ln(2x), \qquad x > 0$$

(c) Solve the equation

$$g(x) + g(x^2) + g(x^3) = 6$$

giving your answer in its simplest form.

(4)

(d) Find fg(x), giving your answer in its simplest form.

(2)

(e) Find, in terms of the constant k, the solution of the equation

$$fg(x) = 2k^2$$

(2)

$$\frac{1}{2}\ln(x-\kappa^2) = y$$

$$f^{-1}(x) = \frac{1}{2} \ln(x - h^2)$$

Leave blank

Question 6 continued

The function g is defined by

$$g: x \to \ln(2x), \qquad x > 0$$

(c) Solve the equation

$$g(x) + g(x^2) + g(x^3) = 6$$

giving your answer in its simplest form.

(4)

c)
$$\ln(2x) + \ln(2x^2) + \ln(2x^3) = 6$$

$$x = e$$

$$x = \frac{e}{\sqrt{2}}$$

Leave blank

Question 6 continued

(d) Find fg(x), giving your answer in its simplest form.

(2)

(e) Find, in terms of the constant k, the solution of the equation

$$fg(x) = 2k^2$$

(2)

d)
$$f(x) = e^{2x} + k^2$$
 $g(x) = \ln(2x)$

$$fg(x) = f(\ln(2x))$$

e)
$$4x^2 + k^2 = 2k^2$$

$$4x^2 = k^2$$

$$2x = K$$

$$x = k$$

