Compound Measures Revision

Speed $=\frac{\text { Distance }}{\text { Time }}$
Time $=\frac{\text { Distance }}{\text { Speed }}$

$$
\text { Density }=\frac{\text { Mars }}{\text { Volume }}
$$

$$
\text { Distance }=\text { Speed } \times \text { Time }
$$

$$
\text { Volume }=\frac{\text { Mass }}{\text { Density }}
$$

$$
\text { Mass }=\text { Density } \times \text { Volume }
$$

John driver from A to B at 50 mph for 2 hrs. He then drives from B to C a distance of 120 miles in 3 hrs. He then drives from $($ to l a distance of 80 miles at 20 mph .
What was his average speed for whole journey from A to D

$$
\begin{aligned}
& \text { Average Speed }=\frac{\text { Total Drifance }}{\text { Total Time }}=\frac{300}{9}=\begin{array}{l}
33.3 \\
\mathrm{mph}
\end{array}
\end{aligned}
$$

Compound A has density $6 \mathrm{~g} / \mathrm{cn}^{3}$
Compound B has density $8 \mathrm{~g} / \mathrm{cm}^{3}$
50 g of A are mixed with 120 g of B to make a compound C
What is the density of C ?

$$
\begin{aligned}
& \text { Density of } C=\frac{\text { Total Mas }}{\text { Total Volume }} \\
&=\frac{50+120}{23.33}=7.29 \\
& \mathrm{~g} / \mathrm{ca}^{3}
\end{aligned}
$$

