Paper 2 Option E

Further Statistics 1 Mark Scheme (Section A)

Question	Scheme					Marks	AOs
1(a)	H_{0} : There is no association between language and gender					B1	1.2
						(1)	
(b)	$\frac{54 \times 85}{150}=30.6 \quad *$					B1*cso	1.1b
						(1)	
(c)	Expected frequencies		Language			M1	2.1
			French	Spanish	Mandarin		
	Gender	Male	26.43...	23.4	15.16...		
		Female	34.56...	[30.6]	19.83...		
	$\chi^{2}=\sum \frac{(O-E)^{2}}{E}=\frac{(23-26.43)^{2}}{26.43}+\ldots+\frac{(15-19.83)^{2}}{19.83}$					M1	$1.1 \mathrm{~b}$
						(3)	
(d)	Degrees of freedom (3-1)(2-1) \rightarrow Critical value $\chi_{2,0.01}^{2}=9.210$					M1	3.1 b
	As $\sum \frac{(O-E)^{2}}{E}<9.210$, the null hypothesis is not rejected					A1	2.2 b
						(2)	
(e)	Still not rejected since $\sum \frac{(O-E)^{2}}{E}<\chi_{2,0.1}^{2}=4.605$					B1	2.4
						(1)	
(8 marks)							
Notes:							
B1: For correct hypothesis in context							
(b) B1*: For a correct calculation leading to the given answer and no errors seen							
(c) M1: For M1: For A1: awr	$\begin{aligned} & \text { tempt at } \frac{\text { (Row T }}{} \\ & \text { pplying } \sum \frac{(O-1}{E} \\ & .6 \text { or } 3.7 \end{aligned}$	al)(Colun	Total)	find expe	ed frequencies		
M1: For using degrees of freedom to set up a χ^{2} model critical value A1: For correct comparison and conclusion							
(e) A1ft: For correct conclusion with supporting reaso							

Question 2 notes continued:

Another method for part (a) is:

M1: For using given information to find the probability distribution for Y leading to an expression for $\mathrm{E}(Y)$
M1: For use of $\sum y \mathrm{P}(Y=y)=-4$
M1: For use of $\mathrm{P}(Y \geqslant-3)=0.45$ to set up the argument for solving by forming an equation in a and c
M1: For use of $\sum \mathrm{P}(Y=y)=1$
M1: For solving their 3 linear equations (matrix or elimination)
A1: For any 2 of a, b or c correct
A1: For all 3 correct values
(b)

M1: For use of $\operatorname{Var}(Y)=\mathrm{E}\left(Y^{2}\right)-[\mathrm{E}(Y)]^{2} \quad$ (may be implied by a correct answer)
A1: For use of $\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)$ to reach 2.36 or exact equivalent
(c)

M1: For rearranging to the form $\mathrm{P}(X<k)$
A1ft: $0.1^{\prime}+{ }^{\prime} 025^{\prime}$ (provided their a and c and their $a+c$ are all probabilities)
Another method for part (c) is:
M1: For comparing distribution of X with distribution of Y to identify $X=-1$ and $X=0$
A1ft: ${ }^{\prime} 0.1$ ' $+{ }^{\prime} 025$ ' (provided their a and c and their $a+c$ are all probabilities)

Question	Scheme	Marks	AOs
3(a)	$X \sim \operatorname{Po}(2.6) \quad Y \sim \operatorname{Po}(1.2)$		
	P (each hire 2 in 1 hour) $=\mathrm{P}(X=2) \times \mathrm{P}(Y=2)=0.25104 \ldots \times 0.21685 \ldots$	M1	3.3
	$=0.05444 \ldots$ awrt $\underline{0.0544}$	A1	1.1b
		(2)	
(b)	$W=X+Y \rightarrow W \sim \operatorname{Po}(3.8)$	M1	3.4
	$\mathrm{P}(W=3)=0.20458 \ldots . \quad$ awrt $\underline{\mathbf{0 . 2 0 5}}$	A1	1.1b
		(2)	
(c)	$T \sim \operatorname{Po}((2.6+1.2) \times 2)$	M1	3.3
	$\mathrm{P}(T<9)=0.64819 \ldots \quad$ awrt $\underline{\mathbf{0 . 6 4 8}}$	A1	1.1 b
		(2)	
(d)	(i) Mean $=n p=\underline{\mathbf{2} .4}$	B1	1.1 b
	(ii) Variance $=n p(1-p)=2.3904$ awrt $\underline{\mathbf{2 . 3 9}}$	B1	1.1b
		(2)	
(e)	$\begin{aligned} & \text { (i) }[D \sim \operatorname{Po}(2.4) \quad \mathrm{P}(D \leqslant 4)] \\ & =0.9041 \ldots \end{aligned}$ $\text { awrt } \underline{0.904}$	B1	1.1b
	(ii) Since n is large and p is small/mean is approximately equal to variance	B1	2.4
		(2)	
(10 marks)			
Notes:			
(a) M1: For $\mathrm{P}(X=2) \times \mathrm{P}(Y=2)$ from $X \sim \operatorname{Po}(2.6)$ and $Y \sim \operatorname{Po}(1.2)$ i.e. correct models (may be implied by correct answer) A1: awrt 0.0544			
(b) M1: For combining Poisson distributions and use of $\operatorname{Po}\left({ }^{(} 3.8^{\prime}\right)$ (may be implied by correct answer) A1: awrt 0.205			
(c) M1: For setting up a new model and attempting mean of Poisson distribution (may be implied by correct answer) A1: awrt 0.648			
B1: For 2.4			
(d)(ii) B1: For awrt 2.39			
(e)(i) B1: For awrt 0.904			
(e)(ii) B1: For a correct explanation to support use of Poisson approximation in this case			

Question	Scheme	Marks	AOs
4(a)	(i) $\mathrm{P}(X=1)=0.34523 \ldots$ awrt $\underline{\mathbf{0 . 3 4 5}}$	B1	1.1 b
	(ii) $\mathrm{P}(X \leqslant 4)=0.98575 \ldots \quad$ awrt $\underline{\mathbf{0 . 9 8 6}}$	B1	1.1 b
		(2)	
(b)	$\frac{(0 \times 10)+1 \times 16+2 \times 7+3 \times 4+4 \times 2+(5 \times 0)+6 \times 1}{40}=1.4^{*}$	B1*cso	1.1b
		(1)	
(c)	$r=40 \times$ '0.34523 \ldots ' $\quad s=40 \times 1-0.986 \ldots$.	M1	3.4
	$r=\underline{\mathbf{1 3 . 8 1}} \quad s=\underline{\mathbf{0 . 5 7}}$	A1ft	1.1 b
		(2)	
(d)	H_{0} : The Poisson distribution is a suitable model H_{1} : The Poisson distribution is not a suitable model	B1	3.4
	[Cells are combined when expected frequencies <5] So combine the last 3 cells	M1	2.1
	$\chi^{2}=\sum \frac{(O-E)^{2}}{E}=\frac{(10-9.86)^{2}}{9.86}+\ldots+\frac{(7-(4.51+1.58+0.57))^{2}}{(4.51+1.58+0.57)}$	M1	1.1b
	awrt 1.1	A1	1.1 b
	Degrees of freedom $=4-1-1=2$	B1	3.1 b
	(Do not reject H_{0} since $1.10<\chi_{2,(0.05)}^{2}=5.991$). The number of mortgages approved each week follows a Poisson distribution	A1	3.5a
		(6)	
(11 marks)			
Notes:			
$\begin{aligned} & \text { (a)(i) } \\ & \text { B1: awrt } 0.345 \end{aligned}$			
$\begin{aligned} & \text { (a)(ii) } \\ & \text { B1: awrt } 0.986 \\ & \hline \end{aligned}$			
(b) B1*: For a fully correct calculation leading to given answer with no errors seen			
(c) M1: For attempt at r or s (may be implied by correct answers) A1ft: For both values correct (follow through their answers to part (a))			
(d) B1: For both hypotheses correct (lambda should not be defined so correct use of the model) M1: For understanding the need to combine cells before calculating the test statistic (may be implied)			
A1: awrt 1.1 B1: For realising that there are 2 degrees of freedom leading to a critical value of $\chi_{2}^{2}(0.05)=5.991$			
A1: Concluding that a Poisson model is suitable for the number of mortgages approved each week			

Further Mechanics 1 Mark Scheme (Section B)

Question	Scheme	Marks	AOs
5(a)	Using the model and $v^{2}=u^{2}+2 a s$ to find v	M1	3.4
	$v^{2}=2 a s=2 g \times 2.4=4.8 g \quad \Rightarrow \quad v=\sqrt{ }(4.8 g)$	A1	1.1b
	Using the model and $v^{2}=u^{2}+2 a s$ to find u	M1	3.4
	$0^{2}=u^{2}-2 g \times 0.6 \Rightarrow u=\sqrt{ }(1.2 g)$	A1	1.1b
	Using the correct strategy to solve the problem by finding the sep. speed and app. speed and applying NLR	M1	3.1b
	$e=\sqrt{ }(1.2 g) / \sqrt{ }(4.8 g)=0.5$ *	A1*	1.1b
		(6)	
(b)	Using the model and $e=$ sep. speed / app. speed, $v=0.5 \sqrt{ }(1.2 g)$	M1	3.4
	Using the model and $v^{2}=u^{2}+2 a s$	M1	3.4
	$0^{2}=0.25(1.2 g)-2 g h \Rightarrow h=0.15(\mathrm{~m})$	A1	1.1b
		(3)	
(c)	Ball continues to bounce with the height of each bounce being a quarter of the previous one	B1	2.2b
		(1)	
(10 marks)			
Notes:			
(a) M1: For a complete method to find v A1: For a correct value (may be numerical) M1: For a complete method to find u A1: For a correct value (may be numerical) M1: For finding both v and u and use of Newton's Law of Restitution A1*: For the given answer			
(b) M1: For use of Newton's Law of Restitution to find rebound speed M1: For a complete method to find h A1: For 0.15 (m) oe			
(c) B1: For a clear description including reference to a quarter			

Question	Scheme	Marks	AOs
6(a)	Energy Loss $=$ KE Loss - PE Gain	M1	3.3
	$=\frac{1}{2} \times 0.5 \times 25^{2}-0.5 g \times 20$	A1	1.1b
	$=58.25=58(\mathrm{~J})$ or $58.3(\mathrm{~J})$	A1	1.1b
		(3)	
(b)	Using work-energy principle, $20 R=58.25$	M1	3.3
	$R=2.9125=2.9$ or 2.91	A1ft	1.1b
		(2)	
(c)	Make resistance variable (dependent on speed)	B1	3.5c
		(1)	
(6 marks)			
Notes:			
(a)			
M1: For a difference in KE and PE			
A1: For a correct expression			
A1: For either 58 (2sf) or 58.3(3sf)			
(b)			
M1: For use of work-energy principle			
A1ft: For either 2.9 (2sf) or 2.91 (3sf) follow through on their answer to (a)			
(c)			
B1: For variable resistance oe			

Question	Scheme	Marks	AOs
7(a)	Force $=$ Resistance (since no acceleration) $=30$	B1	3.1b
	Power $=$ Force \times Speed $=30 \times 4$	M1	1.1 b
	$=120 \mathrm{~W}$	A1 ft	1.1b
		(3)	
(b)	Resolving parallel to the slope	M1	3.1b
	$F-60 g \sin \alpha-30=0$	A1	1.1b
	$F=70$	A1	1.1b
	Power $=$ Force \times Speed $=70 \times 3$	M1	1.1b
	$=210 \mathrm{~W}$	A1 ft	1.1b
		(5)	
(8 marks)			
Notes:			
(a)			
B1: \quad For force $=30$ seen			
M1: For	For use of $P=F v$		
A1ft: For 120 (W), follow through on their '30'			
(b)			
M1: For	For resolving parallel to the slope with correct no. of terms and 60 g resolved		
A1: For	For a correct equation		
A1: For	For $F=70$		
M1: For	For use of $P=F$ v		
A1ft: For	For 210 (W), follow through on their ' 70 '		

Question	Scheme	Marks	AOs
8(a)	Use of conservation of momentum	M1	3.1a
	$3 m u-2 m u=3 m v+m w$	A1	1.1b
	Use of NLR	M1	3.1a
	$3 u e=-v+w$	A1	1.1b
	Using a correct strategy to solve the problem by setting up two equations (need both) in u and v and solving for v	M1	3.1 b
	$v=\frac{u}{4}(1-3 e)$	A1	1.1b
		(6)	
(b)	$\frac{u}{4}(1-3 e)<0$	M1	3.1 b
	$\frac{1}{3}<e \leq 1$	A1	1.1b
		(2)	
(c)	Solving for w	M1	2.1
	$w=\frac{u}{4}(1+9 e) *$	A1 *	1.1 b
		(2)	
(d)	Substitute $e=\frac{5}{9}$	M1	1.1 b
	$v=-\frac{u}{6}, w=\frac{3 u}{2}$	A1	1.1b
	Use NLR for impact with wall, $x=f w$	M1	1.1 b
	Further collision if $x>-v$	M1	3.4
	$f \frac{3 u}{2}>\frac{u}{6}$	A1	1.1b
	$1 \geq f>\frac{1}{9}$	A1	1.1 b
		(6)	
(16 marks)			
Notes:			
(a)			
M1: For A1: For M1: For A1: For M1: For A1: For	use of CLM, with correct no. of terms, condone sign errors a correct equation use of Newton's Law of Restitution, with e on the correct side a correct equation setting up two equations and solving their equations for v a correct expression for v		
(b) M1: For A1: For	use of an appropriate inequality complete range of values of e		
(c) M1: For solving their equations for w A1: For the given answer			

Question 8 notes continued:

(d)

M1: For substituting $e=\frac{5}{9}$ into their v and w
A1: \quad For correct expressions for v and w
M1: For use of Newton's Law of Restitution, with e on the correct side
M1: For use of appropriate inequality
A1: For a correct inequality
A1: For a correct range

