Paper 2 Option E

Quest	tion	Scheme	Marks	AOs
1(a	l)	H ₀ : There is no association between language and gender	B1	1.2
			(1)	
(b))	$\frac{54 \times 85}{2} = 30.6$ *	B1*cso	1 1h
		150 - 50.0	DI 030	1.10
			(1)	
(c))	Language		
		Expected French Spanish Mandarin		
			M1	2.1
		Gender $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		Female 34.56 [30.6] 19.83		
		$(O E)^2$ $(22 - 26 A2)^2$ $(15 - 10 P2)^2$		
		$\chi^{2} = \sum \frac{(O-E)}{E} = \frac{(23-20.43)}{26.43} + \dots + \frac{(13-19.83)}{19.83}$	MI	l.lb
		Awrt 3.6/3.7	A1	1 1b
			(3)	
(d))	Degrees of freedom $(3-1)(2-1) \rightarrow$ Critical value $\chi^2_{2,0,01} = 9.210$	M1	3.1b
		$(O E)^2$		
		As $\sum \frac{(O-E)}{F} < 9.210$, the null hypothesis is not rejected	A1	2.2b
			(2)	
(e))	$\sum (Q-E)^2$ 2 4.005		
		Still not rejected since $\sum \frac{1}{E} < \chi^2_{2,0.1} = 4.605$	BI	2.4
			(1)	
			(8 n	narks)
Notes	;:			
(a) P1 .	For	correct hypothesis in context		
(b)	1010			
B1*:	For a	correct calculation leading to the given answer and no errors seen		
(c)		(Pow Total)(Column Total)		
M1:	For a	$\frac{(\text{Kow Fotal)}(\text{Column Fotal)}}{(\text{Grand Total})}$ to find expected frequencies		
M1:	For a	applying $\sum \frac{(O-E)^2}{2}$		
A1.	awrt	E		
(d)	uvit			
M1:	For ι	using degrees of freedom to set up a χ^2 model critical value		
A1:	For c	correct comparison and conclusion		
(e)				
Alft:	For c	correct conclusion with supporting reason		

Further Statistics 1 Mark Scheme (Section A)

Question	Scheme	Marks	AOs
2(a)	$-4 = 2 - 5\mathrm{E}(X)$	M1	3.1a
	E(X) = 1.2		
	$-1 \times c + 0 \times a + 1 \times a + 2 \times b + 3 \times c = 1.2$	M1	1.1b
	a + 2b + 2c = 1.2 1		
	$P(Y \ge -3) = 0.45$ gives $P(2-5X \ge -3) = 0.45$		
	i.e. $P(X \le 1) = 0.45$	M1	2.1
	2a + c = 0.45 2		
	2a+b+2c=1	M1	1.1b
	$ \begin{pmatrix} 1 & 2 & 2 \\ 2 & 0 & 1 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1.2 \\ 0.45 \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 2 & -3 \\ -2 & -3 & 4 \end{pmatrix} \begin{pmatrix} 1.2 \\ 0.45 \\ 1 \end{pmatrix} \underline{\text{or}} $	M1	1.1b
	e.g. $\underline{[3]} - \underline{[2]} \Rightarrow b + c = 0.55$ sub. $2(b+c)$ into $\underline{[1]} \Rightarrow a = 0.1$ etc		
	a = 0.1 $b = 0.3$ $c = 0.25$	A1	1.1b
		Al	1.1b
		(7)	
	$Var(Y) = 75 - (-4)^2 \text{ or } 59$	M1	1.1a
(b)	$[Var(Y) = 5^{2}Var(X) \text{ implies}] Var(X) = 2.36$	A1	1.2
		(2)	
	$P(Y > X) = P(2 - 5X > X) \rightarrow P(X < \frac{1}{3})$	M1	3.1a
(c)	$P(X < \frac{1}{3}) = a + c = 0.35$	Alft	1.1b
		(2)	
		(11 n	narks)
Notes:			

(a)

M1: For using given information to find an expression for E(X) i.e. use of E(Y) = 2 - 5E(X)

M1: For use of $\sum x P(X = x) = `1.2'$

M1: For use of $P(Y \ge -3) = 0.45$ to set up the argument for solving by forming an equation in *a* and *c*

M1: For use of $\sum P(X = x) = 1$

M1: For solving their 3 linear equations (matrix or elimination)

- A1: For any 2 of *a*, *b* or *c* correct
- A1: For all 3 correct values

Quest	tion 2 notes continued:		
Anoth	er method for part (a) is:		
M1:	For using given information to find the probability distribution for Y leading to an		
	expression for $E(Y)$		
M1:	For use of $\sum y P(Y = y) = -4$		
M1:	For use of P($Y \ge -3$) = 0.45 to set up the argument for solving by forming an equation		
	in a and c		
M1:	For use of $\sum P(Y = y) = 1$		
M1:	For solving their 3 linear equations (matrix or elimination)		
A1:	For any 2 of a, b or c correct		
A1:	For all 3 correct values		
(b)			
M1:	For use of $Var(Y) = E(Y^2) - [E(Y)]^2$ (may be implied by a correct answer)		
A1:	For use of $Var(aX) = a^2 Var(X)$ to reach 2.36 or exact equivalent		
(c)			
M1:	For rearranging to the form $P(X \le k)$		
A1ft:	0.1' + '025' (provided their a and c and their $a + c$ are all probabilities)		
Anoth	Another method for part (c) is:		
M1:	For comparing distribution of X with distribution of Y to identify $X = -1$ and $X = 0$		
A1ft:	'0.1' + '025' (provided their a and c and their $a + c$ are all probabilities)		

Quest	tion Scheme	Marks	AOs
3 (a) $X \sim Po(2.6)$ $Y \sim Po(1.2)$		
	P(each hire 2 in 1 hour) = $P(X=2) \times P(Y=2) = 0.25104 \times 0.21685$	M1	3.3
	= 0.05444 awrt <u>0.0544</u>	A1	1.1b
		(2)	
(b)	$W = X + Y \longrightarrow W \sim \text{Po}(3.8)$	M1	3.4
	P(W=3) = 0.20458 awrt <u>0.205</u>	A1	1.1b
		(2)	
(c)	$T \sim \text{Po}((2.6+1.2) \times 2)$	M1	3.3
	P(T < 9) = 0.64819 awrt <u>0.648</u>	A1	1.1b
		(2)	
(d)	(i) Mean = $np = 2.4$	B1	1.1b
	(ii) Variance = $np(1-p) = 2.3904$ awrt <u>2.39</u>	B1	1.1b
		(2)	
(e)	(i) $[D \sim Po(2.4) P(D \le 4)]$ = 0.9041 awrt 0.904	B1	1.1b
	$\frac{-0.9041}{(i)}$ Since <i>n</i> is large and <i>n</i> is small/mean is enprovimately equal to		
	variance	B1	2.4
		(2)	• `
		(10 n	narks)
Notes			
M1:	For $P(X=2) \times P(Y=2)$ from $X \sim Po(2.6)$ and $Y \sim Po(1.2)$ i.e. correct m implied by correct answer) awrt 0.0544	odels (may b	e
(b)			
M1:	For combining Poisson distributions and use of Po('3.8') (may be implie answer)	d by correct	
A1:	awrt 0.205		
M1:	For setting up a new model and attempting mean of Poisson distribution (may be implied by correct answer)		lied
A1:	awrt 0.648		
(d)(i) B1:	For 2.4		
(d)(ii) B1:	For awrt 2.39		
(e)(i) B1:	For awrt 0.904		
(e)(ii) B1:	For a correct explanation to support use of Poisson approximation in this	case	

Quest	tion Scheme	Marks	AOs
4 (a) (i) $P(X=1) = 0.34523$ awrt <u>0.345</u>	B1	1.1b
	(ii) $P(X \le 4) = 0.98575$ awrt <u>0.986</u>	B1	1.1b
		(2)	
(b)	$\frac{(0 \times 10) + 1 \times 16 + 2 \times 7 + 3 \times 4 + 4 \times 2 + (5 \times 0) + 6 \times 1}{40} = 1.4^{*}$	B1*cso	1.1b
		(1)	
(c)	$r = 40 \times 0.34523$ $s = 40 \times 1 - 0.986$	M1	3.4
	r = 13.81 $s = 0.57$	A1ft	1.1b
		(2)	
(d)	H₀: The Poisson distribution is a suitable modelH₁: The Poisson distribution is not a suitable model	B1	3.4
	[Cells are combined when expected frequencies < 5] So combine the last 3 cells	M1	2.1
	$\chi^{2} = \sum \frac{(O-E)^{2}}{E} = \frac{(10-9.86)^{2}}{9.86} + \dots + \frac{(7-(4.51+1.58+0.57))^{2}}{(4.51+1.58+0.57)}$	M1	1.1b
	awrt <u>1.1</u>	Al	1.1b
	Degrees of freedom = $4 - 1 - 1 = 2$	B1	3.1b
	(Do not reject H ₀ since $1.10 < \chi^2_{2,(0.05)} = 5.991$). The number of mortgages approved each week follows a Poisson distribution	A1	3.5a
		(6)	
		(11 n	narks)
Notes	:		
(a)(i) B1:	awrt 0.345		
(a)(ii) B1:	awrt 0.986		
(b) B1*:	For a fully correct calculation leading to given answer with no errors seen		
(c) M1: A1ft:	For attempt at <i>r</i> or <i>s</i> (may be implied by correct answers) For both values correct (follow through their answers to part (a))		
(d) B1: M1:	For both hypotheses correct (lambda should not be defined so correct use of the model) For understanding the need to combine cells before calculating the test statistic (may be implied)		
M1:	For attempt to find the test statistic using $\chi^2 = \sum \frac{(O-E)^2}{E}$		
A1: B1:	awrt 1.1 For realising that there are 2 degrees of freedom leading to a critical value of $\chi_2^2(0.05) = 5.991$		
A1:	Concluding that a Poisson model is suitable for the number of mortgages a week	pproved ea	ch

Questi	on Scheme	Marks	AOs
5(a)	Using the model and $v^2 = u^2 + 2as$ to find v	M1	3.4
	$v^2 = 2as = 2g \times 2.4 = 4.8g \implies v = \sqrt{(4.8g)}$	A1	1.1b
	Using the model and $v^2 = u^2 + 2as$ to find u	M1	3.4
	$0^2 = u^2 - 2g \times 0.6 \implies u = \sqrt{(1.2g)}$	A1	1.1b
	Using the correct strategy to solve the problem by finding the sep. speed and app. speed and applying NLR	M1	3.1b
	$e = \sqrt{(1.2g)} / \sqrt{(4.8g)} = 0.5 *$	A1*	1.1b
		(6)	
(b)	Using the model and $e = \text{sep. speed} / \text{app. speed}$, $v = 0.5\sqrt{(1.2g)}$	M1	3.4
	Using the model and $v^2 = u^2 + 2as$	M1	3.4
	$0^2 = 0.25 (1.2g) - 2gh \implies h = 0.15 (m)$	A1	1.1b
		(3)	
(c)	Ball continues to bounce with the height of each bounce being a quarter of the previous one	B1	2.2b
		(1)	
		(10 m	arks)
Notes			
(a) M1: A1: M1: A1: M1: A1*:	For a complete method to find v For a correct value (may be numerical) For a complete method to find u For a correct value (may be numerical) For finding both v and u and use of Newton's Law of Restitution For the given answer		
(b) M1: M1: A1:	For use of Newton's Law of Restitution to find rebound speed For a complete method to find h For 0.15 (m) oe		
(c) B1:	For a clear description including reference to a quarter		

Further Mechanics 1 Mark Scheme (Section B)

Quest	tion	Scheme	Marks	AOs
6(a	ı)	Energy Loss = KE Loss – PE Gain	M1	3.3
		$= \frac{1}{2} \times 0.5 \times 25^2 - 0.5 g \times 20$	A1	1.1b
		= 58.25 = 58 (J) or 58.3 (J)	A1	1.1b
			(3)	
(b))	Using work-energy principle, $20 R = 58.25$	M1	3.3
		R = 2.9125 = 2.9 or 2.91	Alft	1.1b
			(2)	
(c))	Make resistance variable (dependent on speed)	B1	3.5c
			(1)	
			(6 n	narks)
Notes	51			
(a) M1: A1: A1:	For a For a For e	a difference in KE and PE a correct expression either 58 (2sf) or 58.3(3sf)		
(b) M1: A1ft:	For u For e	use of work-energy principle either 2.9 (2sf) or 2.91 (3sf) follow through on their answer to (a)		
(c) B1:	For	variable resistance oe		

Questi	on Scheme	Marks	AOs
7(a)	Force = Resistance (since no acceleration) = 30	B1	3.1b
	Power = Force \times Speed = 30 \times 4	M1	1.1b
	= 120 W	A1 ft	1.1b
		(3)	
(b)	Resolving parallel to the slope	M1	3.1b
	$F - 60g\sin\alpha - 30 = 0$	A1	1.1b
	F = 70	A1	1.1b
	Power = Force \times Speed = 70 \times 3	M1	1.1b
	= 210 W	A1 ft	1.1b
		(5)	
		(8 n	narks)
Notes:			
(a) B1: M1: A1ft:	For force = 30 seen For use of $P = Fv$ For 120 (W), follow through on their '30'		
(b) M1: A1: A1: M1: A1ft:	For resolving parallel to the slope with correct no. of terms and 60g resolved For a correct equation For $F = 70$ For use of $P = Fv$ For 210 (W), follow through on their '70'		

Questio	n Scheme	Marks	AOs
8 (a)	Use of conservation of momentum	M1	3.1a
	3mu - 2mu = 3mv + mw	A1	1.1b
	Use of NLR	M1	3.1a
	3ue = -v + w	A1	1.1b
	Using a correct strategy to solve the problem by setting up two equations (need both) in u and v and solving for v	M1	3.1b
	$v = \frac{u}{4}(1 - 3e)$	A1	1.1b
		(6)	
(b)	$\frac{u}{4}(1 - 3e) < 0$	M1	3.1b
	$\frac{1}{3} < e \le 1$	A1	1.1b
		(2)	
(c)	Solving for <i>w</i>	M1	2.1
	$w = \frac{u}{4} (1 + 9e) *$	A1 *	1.1b
		(2)	
(d)	Substitute $e = \frac{5}{9}$	M1	1.1b
	$v = -\frac{u}{6}, w = \frac{3u}{2}$	A1	1.1b
	Use NLR for impact with wall, $x = fw$	M1	1.1b
	Further collision if $x > -v$	M1	3.4
	$f\frac{3u}{2} > \frac{u}{6}$	A1	1.1b
	$1 \ge f > \frac{1}{9}$	A1	1.1b
		(6)	
		(16 n	narks)
Notes:			
(a) M1. T	or use of CIM with correct no of terms condens size errors		
A1: F	or a correct equation		
M1: F	or use of Newton's Law of Restitution, with <i>e</i> on the correct side		
A1: F	or a correct equation		
M1: H	or setting up <i>two</i> equations and solving their equations for v		
$\begin{array}{c c} A1: & 1 \\ \hline (h) \end{array}$			
M1: F	or use of an appropriate inequality		
A1; F			
M1: F	or solving their equations for w		
A1: F	or the given answer		

Question 8 notes continued:		
(d)		
M1:	For substituting $e = \frac{5}{9}$ into their v and w	
A1:	For correct expressions for v and w	
M1:	For use of Newton's Law of Restitution, with e on the correct side	
M1:	For use of appropriate inequality	
A1:	For a correct inequality	
A1:	For a correct range	