Algebraic Proof
Usually we are dealing with integers in GCSE Prot
If we need an integer, call it n say If we need two integers call them min say If we need an even integer let it be

In where n is an integer If we need an odd number let it be $2 n+1$ where n is an integer

Ext Prove an even + even = even
Let even numbers be
In and $2 m$ where m, n are integers

$$
2 n+2 m=2(n+m)
$$

$\therefore 2$ is factor and so answer is even
Ex 2 Prove an odd \times odd $=$ odd
Let odd numbers be

$$
\begin{aligned}
& 2 n+1 \text { and } 2 m+1 \\
& (2 n+1)(2 m+1) \\
& =4 n m+2 m+2 n+1
\end{aligned}
$$

$$
=2(2 n m+m+n)+1
$$

This is an even number 1 so is odd

Ex 3 Prove the sum of any 3 consecutive integers is a multiple of 3

Let integers be $n, n+1, n+2$

$$
\begin{aligned}
& n+n+1+n+2 \\
= & 3 n+3 \\
= & 3(n+1)
\end{aligned}
$$

3 is a factor so this is a multiple of 3

Exercise

1) Prove odd + odd $=$ even

Lee numbers be $2 n+1,2 m+1$

$$
\begin{aligned}
& =2 n+1+2 m+1 \\
& =2 n+2 m+2 \\
& =2(n+m+1)
\end{aligned}
$$

has a factor of 2 so is even
2) Prove odd x even $=$ even

Let numbers be $2 n+1$ and $2 m$

$$
\begin{aligned}
& 2 m x(2 n+1) \\
& =2(2 m n+m)
\end{aligned}
$$

2 is a factor so number is even
Proof

1. The $\mathrm{n}^{\text {th }}$ even number is 2 n .
a. The next even number can be written as $2 n+2$

Explain why Even numbers are two units apart So if $2 n$ is even next even is $2 n+2$
b. Write down an expression, in terms of n, for the next even number after $2 n+2 . \quad 2 n+4$
c. Show algebraically that the sum of any 3 consecutive even numbers is always a divisible by $6 \quad 2 n, 2 n+2,2 n+4$ as consecutive evens

$$
\begin{aligned}
& 2 n+2 n+2+2 n+4 \\
= & 6 n+6 \\
= & 6(n+1)
\end{aligned}
$$

6 is a factor so answer divisible by 6

Squaring Brackets

$$
\begin{aligned}
(a+b)^{2} & =(a+b)(a+b) \\
& =a^{2}+a b+a b+b^{2}
\end{aligned}
$$

$$
=a^{2}+2 a b+b^{2}
$$

$=$ the frost term squared + the second term squared + twice the product

$$
\begin{aligned}
(a-b)^{2} & =(a-b)(a-b) \\
& =a^{2}-a b-a b+b^{2} \\
& =a^{2}-2 a b+b^{2}
\end{aligned}
$$

same formula but product term is negative

Examples $(x+3)^{2}=x^{2}+6 x+9$

$$
\begin{aligned}
& (2 x+1)^{2}=4 x^{2}+4 x+1 \\
& (3 x-2)^{2}=9 x^{2}-12 x+4
\end{aligned}
$$

Exercise

$$
\begin{aligned}
& (4 p+q)^{2}=16 p^{2}+8 p q+q^{2} \\
& (3 h+2)^{2}=9 h^{2}+12 h+4 \\
& (2 x+5)^{2}=4 x^{2}+20 x+25 \\
& (x-7)^{2}=x^{2}-14 x+49 \\
& (2 x-5)^{2}=4 x^{2}-20 x+25
\end{aligned}
$$

$$
\begin{aligned}
& (x-3)^{2}=x^{2}-6 x+9 \\
& (y+z)^{2}=y^{2}+2 y z+z^{2} \\
& (4 p+1)^{2}=16 p^{2}+8 p+1 \\
& (2 q+5)^{2}=4 q^{2}+20 q+25 \\
& (2 n+1)^{2}=4 n^{2}+4 n+1
\end{aligned}
$$

