Name:
Circular Motion - Horizontal
Date:
Time:
Total marks available:
Total marks achieved:

Mark Scheme

Question Number	Scheme	Marks
	0.4 m $0.6 m$ $0.6 m$ $0.6 m$	
	$\cos\theta = \frac{0.2}{0.6} \left(= \frac{1}{3} \right)$ Resolve vertically: $T_A \cos\theta = T_B \cos\theta + mg (T_A = T_B + 3mg)$ Acceleration towards the centre: $T_A \sin\theta + T_B \sin\theta = m \times 0.6 \sin\theta \times \omega^2 \left(T_A + T_B = 5 \times \frac{3}{5} \times 100 = 300 \right)$ Substitute values for ω and trig functions and solve to find T_A or T_B $T_B + 147 + T_B = 300, 2T_B = 300 - 147 = 153$ $T_A = 223.5(\text{N}) , T_B = 76.5(\text{N})$ $T_A = 224 \text{or} 220 T_B = 76$ $T_B = 76.5 \text{or} 77 T_A = 223$	M1 A2,1,0 M1 A2,1,0 M1 A1,A1
	ab a second and a second a second and a second a second and a second a second and a	(10) 10

Question Number	Scheme	Marks
(a)	A A A A A A A A B C B C B C B C B C B C B C C	B1 M1 A1 M1 A1=A1
	$\frac{7}{5}T_A = 3ma\omega^2 + mg$ $T_A = \frac{5}{7}m(3a\omega^2 + g)$ *	A1 (8)
(b)	$T_b = \sqrt{2} \left(\frac{4}{5} T_a - mg \right)$	M1
	$= \sqrt{2} \left(\frac{4}{7} m \left(3a\omega^2 + g \right) - mg \right)$ $= \frac{3\sqrt{2}}{7} m \left(4a\omega^2 - g \right) \text{oe}$	A1 (2)
(c)	$T_b \geqslant 0 \Rightarrow 4a\omega^2 \geqslant g$	M1
	$\omega^2 \geqslant \frac{g}{4a}$ $\omega \geqslant \frac{1}{2} \sqrt{\frac{g}{a}} *$ (Allow strict inequalities in (c).)	A1
		(2)
		12

Question Number	Scheme	Marks	
	$\omega = \frac{80 \times 2\pi}{60} \text{ rad s}^{-1} \left(= \frac{8\pi}{3} \approx 8.377 \right)$	B1	
	Accept $v = \frac{16\pi}{75} \approx 0.67 \mathrm{ms}^{-1}$ as equivalent		
	(\uparrow) $R = mg$	B1	
	For least value of μ (\leftarrow) $\mu mg = mr\omega^2$	M1 A1=A	1
	$\mu = \frac{0.08}{9.8} \times \left(\frac{8\pi}{3}\right)^2 \approx 0.57$ accept 0.573	M1 A1	(7)
			[7]

Question Number	Scheme	Marks
	A T _b	
(a) $r = \frac{l}{\sqrt{2}}$		B1
$R(\uparrow)$ $T_a \cos 45$	$S = T_b \cos 45 + mg$	M1A1
	$5 + T_b \cos 45 = mr\omega^2 \tag{1}$	M1A1
$T_a \times \frac{1}{\sqrt{2}} + T_b \times \frac{1}{\sqrt{2}}$	$\frac{1}{2} = m \frac{l}{\sqrt{2}} \omega^2$	
$T_a + T_b = ml\omega^2$	(2)	
$T_a - T_b = mg \sqrt{2}$ $2T_a = m(l\omega^2 + g)$	(1) /2)	M1
$T_a = \frac{1}{2}m(l\omega^2 + g$	√2)	
$T_b = ml\omega^2 - T_a$		A1
$=\frac{1}{2}m(l\omega^2-g\sqrt{l\omega^2-g})$	2)	A1
2		

Question Number	Scheme	Marks	
	$ \begin{array}{c c} A \\ \hline & 13l \\ \hline & T \\ \hline & 5l \\ \hline & mg $		
(a)	$\cos\alpha = \frac{12}{13}$	B1	
	$R(\uparrow) T \cos \alpha = mg$ $T \times \frac{12}{13} = mg$ $T = \frac{13}{12}mg \text{oe}$	M1 A1	(3)
(b)	Eqn of motion $T \sin \alpha = m \frac{v^2}{5l}$	M1 A1	
	$\frac{13mg}{12} \times \frac{5}{13} = m\frac{v^2}{5l}$ $v^2 = \frac{25gl}{12}$	M1 dep	
	$v = \frac{5}{2} \sqrt{\frac{gl}{3}}$ $\left(\text{accept } 5\sqrt{\frac{gl}{12}} \text{ or } \sqrt{\frac{25gl}{12}} \text{ or any other equiv} \right)$	A1	(4)
			[7]

Question Number	Scheme	Marks
	(a) $ \uparrow R = mg $ Use of limiting friction, $F_r = \mu R$ $ \leftarrow \mu R = \frac{m28^2}{120} $ $ \mu = \frac{28^2}{120 \times 9.8} = \frac{2}{3} * \text{cao} $ (b)	B1 B1 M1 A1 M1 A1 (6)
	$ \uparrow \qquad R\cos\alpha - \mu R\sin\alpha = mg $ $ \leftarrow \qquad \mu R\cos\alpha + R\sin\alpha = \frac{mv^2}{r} $ $ \frac{\mu\cos\alpha + \sin\alpha}{\cos\alpha - \mu\sin\alpha} = \frac{v^2}{rg} $ $ \frac{2\cos\alpha + 3\sin\alpha}{3\cos\alpha - 2\sin\alpha} = \frac{25}{24} $ Substituting values $ 27 $	M1 A1 M1 A1 M1 M1 M1 M1 M1 [14]

Question Number	Scheme	Marks
(a)	$R \sin \theta = mx\omega^{2}$ $R \times \frac{x}{r} = mx \times \frac{3g}{2r}$ $R = \frac{3mg}{2}$ $R \cos \theta = mg$ $\frac{3mg}{2} \times \frac{d}{r} = mg$ $d = \frac{2}{3}r$	M1 A1 M1 A1 M1 A1 M1 A1 M1 A1

Question Number	Scheme	Marks
	$R(\uparrow)$ $R = mg$	
	$F = \mu mg$	B1
	$20 \text{ revs per min} = \frac{20}{60} \times 2\pi \text{ rad s}^{-1}$	M1A1
	$\left(=\frac{2}{3}\pi \operatorname{rad} s^{-1}\right)$	
	$R(\rightarrow) \mu mg = m \times 0.4 \times \left(\frac{2}{3}\pi\right)^2$	M1A1ft
	$\mu = \frac{0.4 \times 4\pi^2}{9g}$	
	$\mu = 0.18 \text{ or } 0.179$	A1
		[6]

Notes for Question

- B1 for resolving vertically and using $F = \mu R$ to obtain $F = \mu mg$. This may not be seen explicitly, but give B1 when seen used in an equation.
- M1 for attempting to change revs per minute to rad s⁻¹, must see $(2)\pi$. (Can use 60 or 60^2)

A1 for
$$\frac{20}{60} \times 2\pi$$
 (rad s⁻¹) oe

- M1 for NL2 horizontally along the radius acceleration in either form for this mark, F or μmg or μm all allowed. r to be 0.4 now or later. This is not dependent on the previous M mark.
- A1ft for $\mu mg = m \times 0.4 \times \left(\frac{2}{3}\pi\right)^2$ follow through on their ω

A1cso for $\mu = 0.18$ or 0.179, **must be 2 or 3 sf.**

NB: Use of \leq : is allowed, provided used correctly, until the final statement, which must be $\mu =$

Question Number	Scheme	Marks
(i)	For Q $T = 2mg$ For P $T \cos \theta = mg$	B1 M1
	$\cos\theta = \frac{1}{2} \theta = 60^{\circ} *$	Aleso
(ii)	For $P \rightarrow T \sin \theta = mr\omega^2$ $2mg \sin \theta = m \times 5l \sin \theta \times \omega^2$	M1A1 M1depA1
	$\omega^2 = \frac{2g}{5l} \qquad \omega = \sqrt{\frac{2g}{5l}} *$	Alcso

Notes for Question

In this question, award marks as though the question is not divided into two parts - ie give marks for equations wherever seen.

(i)

B1 for using Q (no need to state Q being used) to state that T = 2mg or $T_Q = 2mg$ with $T_P = T_Q$ seen or implied later.

M1 for attempting to resolve vertically for P T must be resolved but sin/cos interchange or omission of g are accuracy errors.

 $mg + 2mg = T + T\cos\theta$ gets M0

A1cso for combining the two equations to obtain $\theta = 60^{\circ}$

NB: This is a "show" question, so if no expression is seen for T and just $2mg\cos\theta = mg$ shown, award 0/3 as this equation could have been produced from the required result, so insufficient working.

(ii)

M1 for attempting NL2 for P along the radius. The mass used must be m if the particle is not stated to be P; a mass of 2m would imply use of Q.

T must be resolved. Acceleration can be in either form.

A1 for $T \sin \theta = mr\omega^2$ or $T \frac{\sqrt{3}}{2} = mr\omega^2$

M1 dep for eliminating T between the two equations for P and substituting for r in terms of l and θ dependent on the second but not the first M mark.

A1 for $2mg\sin\theta = m \times 5l\sin\theta \times \omega^2$ or $\frac{T\sin\theta}{T\cos\theta} = \tan\theta = 5l\sin\theta \left(\frac{\omega^2}{g}\right)$ θ or 60°

Alcso for re-arranging to obtain $\omega = \sqrt{\frac{2g}{5l}}$ * ensure the square root is correctly placed

Alternatives: Some candidates "cancel" the $\sin \theta$ without ever showing it.

M1A1 for $T = m \times 5l\omega^2$

M1A1 for $2mg = 5ml\omega^2$

Alcso as above

Vector Triangle method: Triangle must be seen

$$T = 2mg$$
 B1
 $\cos \theta = \frac{mg}{2mg}$ M1

$$\theta = 60^{\circ}$$
 A1
Correct triangle M1A1

$$\sin \theta = \frac{5ml \sin \theta \omega^2}{2m\pi}$$
 M1A1

$$\omega = \dots$$
 Alcso (as above)

Question Number	Scheme	Marks
	h $\frac{a}{a}$ a mg	
	Vertical: $R\cos\beta = mg$	M1A1
	Horizontal: $R \sin \beta = \frac{mv^2}{r} = \frac{3mv^2}{a}$	M1A1
	Divide: $\tan \beta = \frac{3mv^2}{amg}$	M1dep
	$\tan \beta = \frac{h}{a}$	B1
	$\frac{3mv^2}{amg} = \frac{h}{a}, \frac{3v^2}{g} = h, v = \sqrt{\frac{hg}{3}}$ *AG*	A1 (7) [7]

Question Number	Scheme	Marks
	mg	
	$R\sin\theta = m \times 4r\sin\theta \times \frac{3g}{8r}$	M1A1A1
	$R = \frac{3}{2}mg$	
	$R\cos\theta = mg$	M1A1
	$\frac{3}{2}mg\cos\theta = mg$	M1(dep)
	$\cos\theta = \frac{2}{3}$	A1
	$OC = 4r\cos\theta = 4r \times \frac{2}{3} = \frac{8}{3}r$ oe	M1A1
	Notes for Question	I
M1	for NL2 towards C - Accept use of $v = \sqrt{\frac{3g}{8r}}$ and $a = \frac{v^2}{r}$ as a mis-read	
A1	for LHS fully correct	
A1	for RHS fully correct	
ALT: M1 A1		
M1 dep	for eliminating R between the two equations Dependent on both above M marks	
A1	for $\cos \theta = \frac{2}{3}$	
M1		
A1 cso	for $OC = \frac{8}{3}r$	

Alternative for Question		
M1A1A1	$R\sin\theta = m \times a \times \frac{3g}{8r}$	
M1 A1	$R\cos\theta = mg$	
M1 A1	$\tan \theta = \frac{3a}{8r}$	
M1	$\frac{a}{OC} = \frac{3a}{8r}$	
A1	$OC = \frac{8r}{3}$	

Q12.

Question Number	Scheme	Marks
(a)	$T\sin 60^{\circ} + R\sin 60^{\circ} = mg$	M1 A1
	$T\cos 60^{\circ} - R\cos 60^{\circ} = ml\cos 60^{\circ}\omega^{2}$	M1 A1 A1
	$T = \frac{1}{2}m(l\omega^2 + \frac{2}{\sqrt{3}}g)$	DM1 A1 (7)
(b)	$R = \frac{1}{2}m(\frac{2}{\sqrt{3}}g - l\omega^2)$	M1 A1
	$\frac{1}{2}m(\frac{2}{\sqrt{3}}g-l\omega^2)>0$	DM1
	$\omega < \sqrt{\frac{2g}{l\sqrt{3}}}$	A1
	$t > 2\pi \sqrt{\frac{l\sqrt{3}}{2g}} **$	DM1 A1 (6)
	V 2g	13
	Notes	
(a)	M1 vertical equation A1 correct vertical equation M1 horizontal equation, acceleration in either form A1 correct lhs A1 correct rhs DM1 solve for T A1 correct T	
(b)	M1 obtain an expression for R A1 correct expression DM1 setting R> 0 A1 correct inequality for w DM1 obtaining an inequality for t A1 correct inequality	

Q13.

Question Number	Scheme	Mark	s
(a)	$R(\uparrow) T_A \cos 30 = mg + T_B \cos 30$	M1A1	
	NL2 $T_A \cos 60 + T_B \cos 60 = mr\omega^2$	M1A1	
	$= m \times 2l \cos 60\omega^2$ or $ml\omega^2$	A1	
	$T_A + T_B = 2ml\omega^2$		
	$T_A + T_B = 2ml\omega^2$ $T_A - T_B = \frac{2mg}{\sqrt{3}}$		
(i)	$T_A - T_B = \frac{2mg}{\sqrt{3}}$ $T_A = \frac{m}{3} \left(3l\omega^2 + g\sqrt{3} \right)$ oe $T_B = \frac{m}{3} \left(3l\omega^2 - g\sqrt{3} \right)$ oe $T_B \geqslant 0 \implies 3l\omega^2 \geqslant g\sqrt{3}$ $\omega^2 \geqslant \frac{g\sqrt{3}}{3l} \implies$	DM1A1	
(ii)	$T_{B} = \frac{m}{3} \left(3l\omega^{2} - g\sqrt{3} \right) \text{oe}$	A1	(8)
(b)	$T_{B}\geqslant 0 \implies 3l\omega^{2}\geqslant g\sqrt{3}$	M1	
	$\omega^2 \geqslant \frac{g\sqrt{3}}{3l}$ *	A1cso	(2)
			[10]

- (a) M1 Resolving vertically
 - Al Correct equation
 - M1 NL2 along radius, acceleration in either form
 - Al LHS correct
 - Al Correct radius substituted and accel in $r\omega^2$. Can be awarded later by implication if work implies correct radius used.
- DM1 Solving the two equations to obtain an expression for either tension. Depenent on both previous M marks
- A1 Tension in AP correct simplified to two terms
- A1 Tension in BP correct simplified to two terms
- (b) M1 Using their tension in $BP \ge 0$ must be \ge for this mark
- Alcso Obtaining the GIVEN answer. Only error allowed is the expression for the tension in AP

<← N2			
$\frac{mv^2}{r} = \mu N, = \mu mg$	M1, A	A1	
$\mu = \frac{v^2}{rg} = \frac{21^2}{75 \times 9.8} = 0.6$	A	1 (3)	
(b) $R(\uparrow) R\cos\alpha, \mp 0.6R\sin\alpha = mg$ $\Rightarrow R(\frac{4}{2}, -\frac{3}{2}, \frac{3}{2}) = mg \Rightarrow R = \frac{25mg}{2}$			
$R(\leftarrow) R \sin \alpha, \pm 0.6R \cos \alpha = \frac{mv^2}{r}$	M1, A	A1, A1	
$v \approx 32.5 \mathrm{m s^{-1}}$	dM1 A	A1cao (5)	
$R - mg \cos \alpha = \frac{mv^2}{r} \sin \alpha$, and $0.6R + mg \sin \alpha = \frac{mv^2}{r} \cos \alpha$ and attempt to eliminate		M1 A1	
Correct work to solve simultaneous equations Answer In part (c) Substitute R into one of the equations Substitutes into a correct equation (earning accuracy marks in part (b))		A1 A1 M1 A1	(4
Obtain $v = 32.5$		M1A1	(
	R(†) $R\cos\alpha, \mp 0.6R\sin\alpha = mg$ $\Rightarrow R\left(\frac{4}{5} - \frac{3}{5} \cdot \frac{3}{5}\right) = mg \Rightarrow R = \frac{25mg}{11}$ $R(\leftarrow) R\sin\alpha, \pm 0.6R\cos\alpha = \frac{mv^2}{r}$ $v \approx 32.5 \text{ m s}^{-1}$ In part (b) M1 needs three terms of which one is mg If $\cos\alpha$ and $\sin\alpha$ are interchanged in equation this is awarded M1 A0 A1 In part (c) M1 needs three terms of which one is $\frac{mv^2}{r}$ or $mr\omega^2$ If $\cos\alpha$ and $\sin\alpha$ are interchanged in equation this is also awarded M1 A0 A1 If they resolve along the plane and perpendicular to the plane in part (b), then attempt $R - mg\cos\alpha = \frac{mv^2}{r}\sin\alpha$, and $0.6R + mg\sin\alpha = \frac{mv^2}{r}\cos\alpha$ and attempt to elimit Two correct equations Correct work to solve simultaneous equations Answer In part (c) Substitute R into one of the equations Substitutes into a correct equation (earning accuracy marks in part (b)) Uses $R = \frac{25mg}{11}$ (or $\frac{25mg}{29}$)	(b) $R(\uparrow) R\cos\alpha, \mp 0.6R\sin\alpha = mg$ $\Rightarrow R\left(\frac{4}{5} - \frac{3}{5} \cdot \frac{3}{5}\right) = mg \Rightarrow R = \frac{25mg}{11}$ $R(\leftarrow) R\sin\alpha, \pm 0.6R\cos\alpha = \frac{mv^2}{r}$ $V \approx 32.5 \text{ m s}^{-1}$ $In part (b) M1 needs three terms of which one is mg if \cos\alpha and \sin\alpha are interchanged in equation this is awarded M1 A0 A1 In part (c) M1 needs three terms of which one is \frac{mv^2}{r} or mr\omega^2 If \cos\alpha and \sin\alpha are interchanged in equation this is also awarded M1 A0 A1 If \text{ they resolve along the plane and perpendicular to the plane in part (b), then attempt at R - mg\cos\alpha = \frac{mv^2}{r}\sin\alpha, and 0.6R + mg\sin\alpha = \frac{mv^2}{r}\cos\alpha and attempt to eliminate v. Two correct equations Correct work to solve simultaneous equations Answer In part (c) Substitute R into one of the equations Substitutes into a correct equation (earning accuracy marks in part (b)) Uses R = \frac{25mg}{11} (or \frac{25mg}{29})$	R(\uparrow) $R\cos\alpha, \mp 0.6R\sin\alpha = mg$ $\Rightarrow R\left(\frac{4}{5} - \frac{3}{5} \cdot \frac{3}{5}\right) = mg \Rightarrow R = \frac{25mg}{11}$ M1, A1, A1 $V \approx 32.5 \text{ m s}^{-1}$ M1 al (4) In part (b) M1 needs three terms of which one is mg If $\cos\alpha$ and $\sin\alpha$ are interchanged in equation this is awarded M1 A0 A1 In part (c) M1 needs three terms of which one is $\frac{mv^2}{r}$ or $mr\omega^2$ If $\cos\alpha$ and $\sin\alpha$ are interchanged in equation this is also awarded M1 A0 A1 If they resolve along the plane and perpendicular to the plane in part (b), then attempt at $R - mg\cos\alpha = \frac{mv^2}{r}\sin\alpha$, and $0.6R + mg\sin\alpha = \frac{mv^2}{r}\cos\alpha$ and attempt to eliminate v Two correct equations Correct work to solve simultaneous equations Answer In part (c) Substitute R into one of the equations Substitutes into a correct equation (earning accuracy marks in part (b)) A1 Uses $R = \frac{25mg}{11}$ (or $\frac{25mg}{29}$)

Question Number	Scheme		Mark	s
	A l T P mg			
	$\uparrow \qquad T\cos\theta = mg$		M1 A1	
	$\leftarrow T \sin \theta = \frac{mv^2}{r}$		M1 A1	
	$\tan\theta = \frac{r}{\sqrt{\left(l^2 - r^2\right)}}$	or equivalent	M1 A1	
	$\tan \theta = \frac{v^2}{rg}$ $\frac{r}{\sqrt{(l^2 - r^2)}} = \frac{v^2}{rg}$	Eliminating T	М1	
	$\frac{r}{\sqrt{(l^2-r^2)}} = \frac{v^2}{rg}$	Eliminating θ	М1	
	$gr^2 = v^2 \sqrt{\left(l^2 - r^2\right)} \bigstar$	cso	A1	(9) [9]

Question Number	Scheme	Marks
(a)	$T_A \cos 30^\circ = mg + T_B \cos 30^\circ$	M1A1
	$T_A - T_B = \frac{2mg}{\sqrt{3}}$	
	Radius = $\frac{1}{2}I \tan 30^{\circ} \left(= \frac{\sqrt{3}}{6}I \text{ oe} \right)$	B1
	$T_A \cos 60^\circ + T_B \cos 60^\circ = mr\omega^2 = m\left(\frac{1}{2}l \tan 30^\circ\right)\omega^2$	M1A1A1ft
	$T_A + T_B = \frac{ml\omega^2}{\sqrt{3}}$	
(i)	$T_A = \frac{1}{2} \left(\frac{2mg}{\sqrt{3}} + \frac{ml\omega^2}{\sqrt{3}} \right) = \frac{m\sqrt{3}}{6} \left(2g + l\omega^2 \right)$ *	DM1A1cso
(ii)	$T_B = \frac{1}{2} \left(\frac{ml\omega^2}{\sqrt{3}} - \frac{2mg}{\sqrt{3}} \right) \text{oe}$	Alcso (9)
(b)	$T_B > 0$ $2mg < ml\omega^2$	M1
	$\omega^2 > \frac{2g}{l}$	A1
	$T_A + T_B = \frac{ml\omega^2}{\sqrt{3}}$ $T_A = \frac{1}{2} \left(\frac{2mg}{\sqrt{3}} + \frac{ml\omega^2}{\sqrt{3}} \right) = \frac{m\sqrt{3}}{6} \left(2g + l\omega^2 \right) $ $T_B = \frac{1}{2} \left(\frac{ml\omega^2}{\sqrt{3}} - \frac{2mg}{\sqrt{3}} \right) $ oe $T_B > 0 $	DM1A1cso (4) [13]

- (a)M1 Attempt a vertical equation, can have θ for the angle
 - A1 Completely correct equation, must have numerical angle now
 - B1 Correct radius seen anywhere
 - M1 NL2 along the radius. Acceleration in either form and can have r for the radius
 - A1 Correct sum of tensions (may have a tension on each side)
- A1ft Correct mass x acceleration, follow through their radius
- (i)DM1 Solve the equations to either $T_A = ...$ or $T_B = ...$ Dependent on both previous M marks. Can be awarded for finding T_A or T_B
- A1cso Correct expression for T_A Given answer so no equivalents allowed.
- (ii)A1 cso Correct expression for T_B . Any equivalent 2 term expression allowed.
- Special case If only one of vertical and radial equations found and the given T_A used to find T_B , award the marks earned for the equation and radius, if used, and B1 for T_B (last A1 in (a) on e-PEN) Max score 5/9
- (b)M1 Deducing an inequality from the expression for T_B Can have $2(m)g < (m)l\omega^2$ or $2(m)g \le (m)l\omega^2$ or $2(m)g = (m)l\omega^2$
 - A1 $\omega^2 > \frac{2g}{l}$ or $\omega^2 \ge \frac{2g}{l}$ oe inc equivalent in words.
- **DM1** Use $T = \frac{2\pi}{\omega}$ with their ω to form an inequality for T, can have T < ... or $T \le ...$

Dependent on the first M mark of (b)

A1cso For a correct final statement from a correct solution. Must be $T < \dots$ or equivalent in words

Question Number	Scheme	Marks
	$1.2mg\cos\theta = mg$ or $T\cos\theta = mg$	M1A1
(i)	$\cos \theta^{\circ} = \frac{1}{1.2}$ $\theta^{\circ} = \cos^{-1} \frac{1}{1.2}$, $\theta = 33.55$ (accept 34, 33.6 or better)	A1
	$1.2mg\sin\theta = mr\omega^2$ or $T\cos\theta = mr\omega^2$	M1A1
	$1.2mg\sin\theta = m \times l\sin\theta\omega^2$	A1
(ii)	$1.2mg = 58.8lm \implies l = \frac{1.2 \times 9.8}{58.8} = 0.2 \text{ (m)}$	dM1A1 (8)

- M1 Resolve vertically. Tension to be resolved, weight not resolved.
- Al Fully correct equation with substitution for T made.
- (i)A1 Correct value of θ Min 2 sf Use of radians scores A0
- M1 Attempt NL2 horizontally. Tension must be resolved, acceleration can be in either form.
- Al LHS correct, RHS can be $mr\omega^2$ or $m\frac{v^2}{r}$ here. T substituted now or later
- Al RHS correct, acceleration as shown. $\sin\theta$ may be numerical $\frac{\sqrt{11}}{6}$ or 0.5527... (min 3 sf) or a numerical value for $r(\frac{\sqrt{11}}{30}$ or 0.110...) may be seen.
- dM1 Use the above equation to obtain a numerical value for l. Depends on the second M mark
- (ii)A1 Correct value of *l*. Accept 0.2, 0.20, 0.200. Exceptionally allow $\frac{1}{5}$ here.