Standard Form

Standard form is used to represent very large
and very shall numbers, particularly in Science.
In standard form a number is written
as a number between 1 and 10 multiplied by
a power of 10
Examples

$$367 = 3.67 \times 10^2$$

 $51,428 = 5.1428 \times 10^4$
 $ar 5.14 \times 10^4$ to 3 sig fig
 $0.000000632 = 6.32 \times 10^{-7}$
Muss of Earth = 5.972×10^{24} kg
Mass of Sum = 1.989×10^{30} kg
How many times greater than the mass of the Earth
is the mass of the Sun?
 $\frac{Mass of Earth}{Tass of Earth} = \frac{1.989 \times 10^{30}}{5.972 \times 10^{24}}$
 $= 333,054$
 $or 3.33 \times 10^5$ to 3 sig fig

Vol of Easth $1.4 \times 10^{27} m^3$ Vol of Sun = 6371 km Radius of Earth Vol of Earth $=\frac{4}{5}\pi r^{3}$ $=\frac{4}{2}\pi \times 6371000^{-1}$ $= 1.083 \times 10^{21} m^{3}$ $\frac{Vol \text{ of } Sun}{Vol \text{ of } Earth} = \frac{1.4 \times 10^{27}}{1.083 \times 10^{21}}$ = 1,292,705 9.109 × 10 tra Mass of electron Mass of proton 1.673 × 10-27 trg Mass of protein = Mass of electron 1.673× 10-21 $9.109 \times 10^{-31} = (837)$ Arithmetic in Standard Form (Non-Calculator) $(8 \times 10^{27}) \times (2 \times 10^{19})$ Multiplication

$$8 \times 2 \times 10^{27} \times 10^{19}$$

$$= 16 \times 10^{46}$$

$$= 1.6 \times 10^{47}$$
Bivision
$$(8 \times 10^{27}) \div (2 \times 10^{19})$$

$$= \frac{8 \times 10^{27}}{2 \times 10^{19}}$$

$$= 4 \times 10^{8}$$
Addition
$$(5.2 \times 10^{7}) \div (3.6 \times 10^{6})$$

$$\frac{5200000}{360000}$$

$$\frac{5.56 \times 10^{7}}{5.60000}$$
Subtraction
$$(5.2 \times 10^{7}) - (3.6 \times 10^{6})$$

$$\frac{8 \times 00000}{48400000}$$

$$\frac{4.84 \times 10^{7}}{4.84 \times 10^{7}}$$

Write down the value of each of the following.		
	b 3.1×100	c 3.1 × 1000
C Write down the value of ea	ch of the following	
	b 6.5×10^2	c 6.5×10^3
Solution Write down the value of ea	ch of the following	
	b 3.1 ÷ 100	c 3.1 ÷ 1000
Write down the value of ea		
	b $6.5 \div 10^2$	c $6.5 \div 10^3$
Evaluate the following.		
a 2.5 × 100	b 3.45 × 10	c 4.67 × 1000
■ 20.789×10	F 56.78 × 1000	g 2.46×10^2
i 0.999×10^6 j	234.56×10^2	k 98.7654 $\times 10^3$
m $0.003 4578 \times 10^5$	n 0.0006×10^7	• $0.005 67 \times 10^4$
Evaluate the following .		
a 2.5 ÷ 100	b 3.45 ÷ 10	c 4.67 ÷ 1000
e 20.789 ÷ 100	f 56.78 ÷ 1000	g $2.46 \div 10^2$
i $0.999 \div 10^6$	$234.56 \div 10^2$	k 98.7654 $\div 10^3$
m 0.003 4578 \div 10 ⁵	n 0.0006 ÷ 10^7	• 0.005 67 \div 10 ⁴