Compound Measures
Speed

Density

Pressure

$$
\begin{aligned}
\text { Speed } & =\frac{\text { Distance }}{\text { Time }} \\
\text { Time } & =\frac{\text { Distance }}{\text { Speed }} \\
\text { Distance } & =\text { Speed } \times \text { Time } \\
\text { Density } & =\frac{\text { Mass }}{\text { Volume }} \\
\text { Volume } & =\frac{\text { Mass }}{\text { Density }} \\
\text { Mass } & =\text { Density } \times \text { Volume }
\end{aligned}
$$

$$
\begin{aligned}
\text { Pressure } & =\frac{\text { Force }}{\text { Area }} \\
\text { Area } & =\frac{\text { Force }}{\text { Pressure }} \\
\text { Force } & =\text { PressurexArea }
\end{aligned}
$$

Speed, Time, Distance

$$
\text { Average Speed }=\frac{\text { Total Distance }}{\text { Total Time }}
$$

Example
John drives for 2 hours at $40 \mathrm{~km} / \mathrm{hr}$ from A to B. He then drives 120 km from B to C at $30 \mathrm{~km} / \mathrm{hr}$.
What is John's average speed for the whole journey from A to C?

$$
\begin{array}{rl}
& \text { Speed Time Distance } \\
\text { AtoM } 40 \mathrm{~km} / \mathrm{h} & 2 \mathrm{hrs} \\
\text { B to } C \quad 30 \mathrm{~km} \\
& \frac{4 \mathrm{krs}}{6 \mathrm{hrs}} \frac{120 \mathrm{~km}}{200 \mathrm{~km}} \\
\text { Average Speed } & =\frac{\text { Total Distance }}{\text { Total Time }}=\frac{200}{6} \\
& 33 \frac{1}{3} \mathrm{~km} / \mathrm{hr}
\end{array}
$$

Ex 2 Bill travels 100 km from P to Q at $25 \mathrm{~km} / \mathrm{h}$. He then travels for 3 hours at $30 \mathrm{~km} / \mathrm{h}$ from Q to R. He then travels from R to S at $40 \mathrm{~km} / \mathrm{h}$ for $1 \frac{1}{2}$ hrs.
Work out his average speed from P to S.

Speed Time Distance

P to Q	$25 \mathrm{~km} / \mathrm{h}$	4 hrs	100 km
Q to R	$30 \mathrm{~km} / \mathrm{h}$	3	90 km
R to S	$40 \mathrm{~km} / \mathrm{h}$	$\frac{1}{2}$	60 km
			$\frac{1}{8 \frac{1}{2} \mathrm{hy}}$

Average Speed $=\frac{\text { Total Distance }}{\text { Total Time }}=\frac{250}{8.5}$

$$
=29.4 \mathrm{kr} / \mathrm{hr}
$$

Density, Mass, Volume
A has density $4 \mathrm{~g} / \mathrm{cm}^{3}$
B has density $6 \mathrm{~g} / \mathrm{cm}^{3}$
A compound C is made from $200 \mathrm{~cm}^{3}$ of A and $150 \mathrm{~cm}^{3}$ of B. Find the density of C

$$
\begin{array}{llll}
& \text { Density } & \text { Mass } & \text { Volume } \\
A & 4 \mathrm{~g} / \mathrm{cm}^{3} & 800 \mathrm{~g} & 200 \mathrm{~cm}^{3} \\
B & 6 \mathrm{~g} / \mathrm{cm}^{3} & 900 \mathrm{~g} & 150 \mathrm{~cm}^{3} \\
\hline & & 1700 \mathrm{~g} & 350 \mathrm{~cm}^{3}
\end{array}
$$

$$
\begin{aligned}
\text { Density of } C=\frac{\text { Total Mass }}{\text { Total Volume }} & =\frac{1700}{350} \\
& =4.86 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

$E \times 2 T$ is made from P, Q, R
P has density $7 \mathrm{~g} / \mathrm{cm}^{3}$ and mass 56 g
Q has density $10 \mathrm{~g} / \mathrm{cm}^{3}$ and volume of $8 \mathrm{~cm}^{3}$
R has mass of 80 g and volume $16 \mathrm{~cm}^{3}$
Find the density of T

$$
\begin{aligned}
& \text { Density Mass Volume } \\
& \text { P } \quad 7 \mathrm{~g} / \mathrm{cm}^{3} \quad 56 \mathrm{~g} \quad 8 \mathrm{~cm}^{3} \\
& \text { Q } \quad 10 \mathrm{~g} / \mathrm{cm}^{3} \quad 80 \mathrm{~g} \quad 8 \mathrm{~cm}^{3} \\
& R \frac{80 \mathrm{~g} 16 \mathrm{~cm}^{3}}{216 \mathrm{~g} 32 \mathrm{~cm}^{3}} \\
& \text { Density of } T=\frac{\text { Total Mass }}{\text { Total Volume }}=\frac{216}{32} \\
& =6.75 \mathrm{~g} / \mathrm{cm}^{3} \\
& \text { Pressure } \\
& \text { Pressure }=\frac{\text { Force }}{\text { Area }} \\
& \text { Area }=\frac{\text { Force }}{\text { Pressure }} \\
& \text { Force }=\text { PressurexArea }
\end{aligned}
$$

Examples

1) Find the pressure when a force of 100 N is exerted over an area of $20 \mathrm{~m}^{2} \quad$ Pressure $=\frac{100 \mathrm{~N}}{20 \mathrm{~m}^{2}}=5 \mathrm{~N} / \mathrm{m}^{2}$
2) A force of 80 N applies a pressure of $4 \mathrm{~N} / \mathrm{m}^{2}$ on a floor. What is the area of the floor? Area $=\frac{80}{4}=20 \mathrm{~m}^{2}$
3) A pressure of $6 \mathrm{~N} / \mathrm{m}^{2}$ is applied across an area of $3 \mathrm{~m}^{2}$. What is the force applied? Force $=6 \times 3=18 \mathrm{~N}$

4 A cyclist travels a distance of 90 miles in 5 hours. What is her average speed? $\frac{90}{5}=18 \mathrm{mph}$
τ I drive to Bude in Cornwall from Sheffield in about 6 hours. The distance from Sheffield to Budge is 315 miles. What is my average speed? $\frac{315}{6}=52.5 \mathrm{mph}$

The distance from Leeds to London is 210 miles. The train travels at an average speed of 90 mph . If I catch the 9:30 am train in London, at what time would you expect me to get to Leeds?

$$
\frac{210}{90}=2 \frac{1}{3} \mathrm{hrs}=2 \mathrm{hs} 20 \mathrm{mon}
$$

$$
\text { so } 11.50 \mathrm{am}
$$

HINTS AND TIPS

Remember to convert time to a decimal if you are using a calculator. For example, 8 hours 30 minutes is 8.5 hours.
$544 \div 8.5$
100×3.25
$215 \div 50=4 \cdot 3$

5 A train travels at $50 \mathrm{~km} / \mathrm{h}$ for 2 hours, then slows down to do the last 30 minutes of its journey at $40 \mathrm{~km} / \mathrm{h}$.
a What is the total distance of this journey? $50+50+20=120 \mathrm{~km}$
b What is the average speed of the train over the whole journey?

$$
\frac{120}{2.5}=48 \mathrm{~km} / \mathrm{h}
$$

Exercise

1) John drives from A to B at 50 mph for 2 hrs. He then drives from B to C a distance of 120 miles in 3 hrs. He then drives from (t od) a distance of 80 miles at 20 mph .
What was his average speed for whole journey from A to D

Speed Time Distance

| A GOB 50 mph | 2 hes | 100 miles |
| :--- | :--- | :--- | :--- |
| BloC 20 mph | 4 hrs | 80 miles |
| | $\frac{6 \mathrm{hrs}}{180 \text { miles }}$ | |

Average Speed $=\frac{\text { Total Time }}{T_{\text {Ital }} \text { Dist }}=\frac{180}{6}=30 \mathrm{mph}$
2) Compound A has density $6 \mathrm{~g} / \mathrm{cn}^{3}$

Compound B has density $8 \mathrm{~s} / \mathrm{cm}^{3}$
50 g of A are mixed with 120 g of B to make a compound C What is the density of C ?

$$
\begin{aligned}
& \text { Density Mass Volume } \\
& \begin{array}{llll}
A & 6 \mathrm{~g}_{1} \mathrm{~cm}^{3} & 50 \mathrm{~g} & 50 \div 68 \frac{1}{3} \mathrm{~cm}^{3} \\
& 8 \mathrm{~g}^{3} \mathrm{~cm}^{3} & 120 \mathrm{~g} & 120 \div 8=15 \mathrm{~cm}^{3} \\
& & 23 \frac{1}{3} \mathrm{~cm}^{3}
\end{array} \\
& \text { Denocty of compound }=\frac{\text { Total myers }}{\text { Total } v_{0} 1}=\frac{170}{23 \frac{1}{3}} \\
& =7.29 \mathrm{~cm}^{3}
\end{aligned}
$$

