Mathematics
 Advanced
 Paper 1: Pure Mathematics 1

Paper 1 Pure Mathematics 1
You must have:
Mathematical Formulae and Statistical Tables,
calculator
Time allowed 2 hours

Name	
Class	
Teacher name	

Total marks

1 Given that $(x+2)$ and $(x-1)$ are factors of $p x^{3}+5 x^{2}+q x-6=0$,
a find the values of p and q.
b Hence sketch the graph of $y=p x^{3}+5 x^{2}+q x-6$ labelling all points of intersection with the coordinate axes.
(4)

2 A function is defined by,

$$
\mathrm{f}(\theta)=2+3 \sec \left(\theta-30^{\circ}\right) \text { for all values of } \theta
$$

a State the range of values of the constant k for which $\mathrm{f}(\theta)=k$ has no solutions.
b Solve $\mathrm{f}(\theta)=7$ in the interval $-180^{\circ} \leq \theta \leq 180^{\circ}$.

3 The ninth term of an arithmetic series is 36 .
The thirteenth term is 16.
The sum of the first n terms is 400 .
a Show that $5 n^{2}-157 n+800=0$
b Hence find the value of n.

4 a Find $\int_{\frac{\pi}{6 k}}^{\frac{\pi}{3 k}}\left(2 \pi \sec ^{2} k x+2\right) \mathrm{d} x$, where k is constant, giving your answer in terms of k.
b Given $\int_{\frac{\pi}{6 k}}^{\frac{\pi}{3 k}}\left(2 \pi \sec ^{2} k x+2\right) \mathrm{d} x=\pi(8 \sqrt{3}+2)$, find the exact value of k.

5 Environmentalists are modelling the number of people, N, in thousands, affected by a nuclear meltdown t hours after the meltdown occurs.

The line l shown in Figure 1 illustrates the linear relationship between t and $\log _{10} N$ for the first 20 hours.

The line l meets the vertical axis at $(0,2.1)$, as shown.
The gradient of l is0.1.

Figure 1
a Write down an equation for l.
(2)

The environmentalists wish to write the relationship between N and t in the form $N=a b^{t}$.
b Find the value of a and the value of b correct to 3 significant figures.
c With reference to the model, interpret the value of a and the value of b.
d Find the population affected, to the nearest 1000 , by the model when $t=15$.
e Find the number of hours it takes for the population afftected to reach 8000000 .
f State one reason why this may not be a realistic model.

6 Figure 2 shows a sketch of part of the graph $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=a-2|x-6|, x \in \mathbb{R}
$$

The graph intercepts the y-axis at $(0,-8)$.

Figure 2
a Find the value of a.
b Solve $\mathrm{f}(x) \geqslant-\frac{1}{2} x+6$

7 a Prove that,

$$
\begin{equation*}
\sec ^{2} \theta+\operatorname{cosec}^{2} \theta \equiv 4 \operatorname{cosec}^{2} 2 \theta, \theta \neq \frac{n \pi}{2}, n \in \mathbb{Z} \tag{4}
\end{equation*}
$$

b Explain why the equation $\sec ^{2} \theta+\operatorname{cosec}^{2} \theta=1$ does not have any real solutions.

8 Figure 3 shows the curve with equation,

$$
y=\sin ^{2} x \cos ^{3} x, 0 \leqslant x \leqslant \frac{\pi}{2}
$$

Figure 3
a Giving your answers to 4 significant figures, complete the table with the value of y corresponding to $x=\frac{2 \pi}{5}$.

x	0	$\frac{\pi}{10}$	$\frac{\pi}{5}$	$\frac{3 \pi}{10}$	$\frac{2 \pi}{5}$	$\frac{\pi}{2}$
y	0	0.0821	0.1829	0.1329		0

b Given that $I=\int_{0}^{\frac{\pi}{2}} \sin ^{2} x \cos ^{3} x \mathrm{~d} x$,
i use the trapezium rule with five strips to find an approximate value for I, giving your answer to 4 significant figures.
ii Explain how the trapezium rule could be used to obtain a more accurate estimate of the integral.
c By using an appropriate substitution, or otherwise, find the exact value of I.
(6)

Pure Mathematics 1 (A level) End of Course Paper 1

9 A function is defined by,

$$
f(x)=2(x-4)^{2}-6-e^{1-0.5 x}, x \geqslant 0
$$

a Show $\mathrm{f}(x)=0$ has a root α in the interval [5.7, 5.8].
b A student takes 5.7 as a first approximation to α.
Given $f^{\prime}(5.7)=6.8786$ to 5 significant figures, apply the Newton-Raphson procedure once to obtain a second approximation for α, giving your answer to 3 decimal places.
c Sketch a graph to show that there are exactly two roots of $\mathrm{f}(x)=0$.

10 A student states, 'if $\frac{a}{b}$ is an irrational number, then at least one of a and b is an irrational number'.
a Use proof by contradiction to prove that the student is correct.

He also states, 'if $\frac{a}{b}$ is a rational number, then both a and b are rational numbers.'
b Show that this statement is not true.

11 Figure 4 shows rectangle $A C D E$ with $\angle D A B=\theta, \angle D B C=2 \theta$ and $A B=B D=1$.

Figure 4
a Show that $A D=\sqrt{2 \cos 2 \theta+2}$.
b Hence prove that $\cos 2 \theta=2 \cos ^{2} \theta-1$.
(Total for Question 11 is 6 marks)

12 The curve C has parametric equations,

$$
x=2 \sin t, y=\frac{1}{2} \operatorname{cosec} t, 0 \leqslant t \leqslant 2 \pi
$$

a Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.

The point P lies on C where $t=\frac{\pi}{4}$. The line l is normal to C at P.
b Show that the equation for l is $y=2 x-\frac{3 \sqrt{2}}{2}$.

The line l intersects the curve C again at Q.
c Find the exact coordinates of Q.
You must show clearly how you obtained your answers.

13 Figure 5 shows a cyclindrical-shaped barrel of diameter 40 cm . It holds rain water.
Rain water flows out of the tap near the bottom of the barrel at a rate proportional to the square root of the volume.

Figure 5
a Show that, at t seconds after the tap is opened, $\frac{\mathrm{d} h}{\mathrm{~d} t}=-k \sqrt{h}$ for some constant k.
b Show that the general solution to this differential equation is $h=(A-B t)^{2}$.

Initially, the height of the water is 64 cm .30 seconds later, the height of the water is 25 cm .
c Find the value of the constants A and B.
d Explain why it might not be appropriate to use the model to calculate the time when the height of the water is 1 cm .

