$y = x^2 - 3x - 4$ Given graph 1) Solve $x^2 - 2x - 8 = 0$ $2c^{2} - 2x - 8 = 0$ -x + 4 = -x + 4 $x^{2} - 3x - 4 = -x + 4$ Draw y= -x+4 where graphs intersect, the x-coords are the solutions to x2-2x-8=0 Solve $x^2 - 6x + 5 = 0$ 2) $x^2 - 6x + 5 = 0$ + 3× -9 = 3×-9 $2c^{2} - 3x - 4 = 3x - 9$ Draw graph y= 3x-9 3) Solve $x^2 - 3x - 10 = 0$ $\chi^2 - J_{x} - 10 = 0$ +6 =+6 Draw graph y=6 $x^2 - 3x - 4 = 6$ 4) Solve $x^2 - x - 2 = 0$ $x^{2} - x - 2 = 0$ $\frac{-2x-2}{x^2} = \frac{-2x-2}{-3x-4} = \frac{-2x-2}{-2x-3}$ Draw graph y=-2x-2

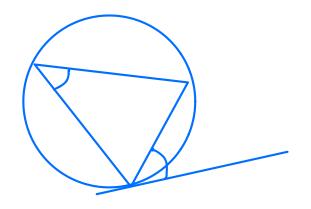
5)
$$x^{2} - 2x - 7 = 0$$

 $x^{2} - 2x - 7 = 0$
 $\frac{-x + 3}{-x + 3} = \frac{-x + 3}{-x + 3}$
 $\frac{-x + 3}{-x + 3} = \frac{-x + 3}{-x + 3}$

Formulae to Memorise

	Sin	C 05	Ean
0°	0	l	0
30°	ź	J3Z	15
45°	走	大	1
60°	53	ーフ	13
90°	1	0	8

 $ax^2 + bx + c = 0$


$$\chi = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Sine Rule
$$\frac{a}{sinA} = \frac{b}{sinB} = \frac{c}{sinC}$$

Cosine Rule $a^2 = b^2 + c^2 - 2bccosA$
Angle form of Cosine Rule $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$
Basic Trigonometry $\frac{H}{A} = 0$

 $Sin = \frac{O}{H}$ $cos = \frac{H}{H}$ $tan = \frac{O}{A}$

3 Properties of Circles and 5 Circle Theorems

- 1. Angle between Tangent/Radius = 90°
- 2. Jangents from a point are equal in length
- 3. Perpendicular bisector of any chard passes through centre
- Circle Theorems
- 1. Alternate Segment Theorem

2. Opposite angles of cyclic quad add up to 180° 3. Angle at the centre is twice angle at circunterene 4. Angles in the same segment are equal 5. Angle in a semi-circle = 90°