Given graph $y=x^{2}-3 x-4$

1) Solve

$$
x^{2}-2 x-8=0 \quad \begin{aligned}
x^{2}-2 x-8 & =0 \\
-x+4 & =\frac{-x+4}{x^{2}-3 x-4}
\end{aligned}
$$

Draw $y=-x+4$
where graphs intersect, the x-Lords are the solutions to $x^{2}-2 x-8=0$
2) Solve $x^{2}-6 x+5=0$

$$
\begin{aligned}
x^{2}-6 x+5 & =0 \\
\frac{+3 x-9}{x^{2}-3 x-4} & =\frac{3 x-9}{3 x-9}
\end{aligned}
$$

Draw graph $y=3 x-9$
3) Solve $x^{2}-3 x-10=0$

$$
\begin{aligned}
x^{2}-3 x-10 & =0 \\
+6 & =+6 \\
x^{2}-3 x-4 & =\frac{1}{6}
\end{aligned}
$$

Draw graph $y=6$

$$
x^{2}-x-2=0
$$

Draw graph $y=-2 x-2$

$$
\frac{-2 x-2}{x^{2}-3 x-4}=\frac{-2 x-2}{-2 x-2}
$$

5)

$$
x^{2}-2 x-7=0
$$

$$
x^{2}-2 x-7=0
$$

Draw graph $y=-x+3$

$$
\frac{-x+3}{2-3 x-4}=\frac{-x+3}{-x+3}
$$

Formulae to Memorise

	\sin	\cos	\tan
0°	0	1	0
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{1}$
90°	1	0	∞

$$
a x^{2}+b x+c=0 \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Sine Rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine Rule $\quad a^{2}=b^{2}+c^{2}-2 b c \cos A$
Angle form of Cosine Rule $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
Basic Trigonometry

$$
\sin =\frac{O}{H}
$$

$$
\begin{aligned}
& \text { y } \quad{ }^{H} / \frac{H}{A} 0 \\
& \cos =\frac{A}{H} \quad \tan =\frac{0}{A}
\end{aligned}
$$

3 Properties of Circles and 5 Circle Theorems

1. Angle between Tangent $/$ Radius $=90^{\circ}$
2. Tangents from a point are equal in length
3. Perpendicular bisector of any chard passes through centre
Circle Theorems
4. Alternate Segment Theorem

5. Opposite angles of cyclic quad add up to 180°
6. Angle at the centre is twice angle at circunfercane
7. Angles in the same segment are equal
8. Angle in a semi-cirele $=90^{\circ}$
