Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
1	$X \sim \text{females } X \sim \text{N}(165, 9^2), Y \sim \text{males } Y \sim \text{N}(178, 10^2)$	M1	3.3	5th
	P(X>177) = P(Z>1.33) (or = 0.0912)	M1	1.1b	Calculate probabilities for
	P(Y>190) = P(Z>1.20) (or = 0.1151)	A1	1.1b	the standard
	Therefore the females are relatively taller.	A1	2.2a	distribution using a calculator.
				(4 marks)

Notes

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
2a	P(M < 850) = 0.3085 (using calculator)	B1	1.1b	5th Calculate probabilities for the standard normal distribution using a calculator.	
		(1)			
2b	P(M < a) = 0.1 and P(M < b) = 0.9	M1	3.1b	5th	
	(using calculator) $a = 772 \text{ g}$	A1	1.1b	Calculate probabilities for	
	b = 1028 g	A1	1.1b	the standard normal distribution using a calculator.	
		(3)			
	(4 marks)				
	Notes				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
3	$X \sim B(200, 0.54)$	B1	3.3	7th
	$Y \sim N(108, 49.68)$	B2	3.1b	Use the normal distribution to
	$P(X > 100) = P(X \ge 101)$	M1	3.4	approximate a binomial
	$=P\bigg(Z\geqslant \frac{100.5-108}{\sqrt{49.68}}\bigg)$	M1	1.1b	distribution.
	$= P(Z \geqslant -1.06) = 0.8554$	A1	1.1b	

(6 marks)

Notes

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
4a	5% 170 μ 180 bell shaped	В1	1.2	5th Understand the basic features of the normal distribution including parameters, shape and notation.
	170, 180 on axis	B1	1.1b	
	5% and 20%	B1	1.1b	
		(3)		
4b	P(X < 170) = 0.05	M1	3.3	7th
	$\frac{170-\mu}{\sigma} = -1.6449$	B1	3.4	Find unknown means and/or standard
	$\mu = 170 + 1.6449\sigma$	B1	1.1b	deviations for normal
	P(X > 180) = 0.2	B1	3.4	distributions.
	$\mu = 180 - 0.8416\sigma$	M1	1.1b	
	Solving simultaneously gives:	A1	1.1b	
	$\mu = 176.615$ (awrt 176.6) and $\sigma = 4.021$ (awrt 4.02)	A1	1.1b	
		(7)		
4c	P(All three are taller than 175 cm) = 0.656^3	M1	1.1b	5th Understand
	= 0.282 (using calculator) awrt 0.282	A1	1.1b	informally the link to probability distributions.
		(2)		
	•	1	1	(12 marks)
	Notes			

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
5a	n is large	B1	1.2	5th
	p is close to 0.5	B1	1.2	Understand the binomial distribution (and its notation) and its use as a model.
		(2)		
5 b	Mean = np	B1	1.2	5th Understand the
	Variance = $np(1-p)$	B1	1.2	binomial distribution (and its notation) and its use as a model.
		(2)		
5c	There would be no batteries left.	B1	2.4	5th Select and critique a sampling technique in a given context.
		(1)		
5d	$H_0: p = 0.55 H_1: p > 0.55$	B1	2.5	5th Carry out 1-tail tests for the binomial distribution.
		(1)		
5e	$X \sim N(165, 74.25)$ $P(X \ge 183.5)$ $= P\left(Z \ge \frac{183.5 - 165}{\sqrt{74.25}}\right)$ $= P(Z \ge 2.146)$	B1 M1 M1	3.3 3.4 1.1b	7th Interpret the results of a hypothesis test for the mean of a normal
	=1-0.9838			distribution.
	= 0.0159 Reject H ₀ , it is in the critical region.	A1 M1	1.1b 1.1b	
	There is evidence to support the manufacturer's claim.	A1	2.2b	
		(7)		
	•	l	1	(13 marks)
	Notes			·

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
6a	Bell shaped.	B1	2.2a	5th Understand the basic features of the normal distribution including parameters, shape and notation.
		(1)		
6b	$X \sim \text{Daily mean pressure } X \sim \text{N}(1006, 4.4^2)$	M1	3.3	5th Calculate probabilities for the standard normal distribution using a calculator.
	P(X < 1000) = 0.0863	A1	1.1b	
		(2)		
6с	A sensible reason. For example, The tails of a Normal distribution are infinite. Cannot rule out extreme events.	B1	2.4	5th Understand the basic features of the normal distribution including parameters, shape and notation.
		(1)		

6d	Comparison and sensible comment on means. For example,			8th
	The mean daily mean pressure for Beijing is less than Jacksonville.	B1	2.2b	Solve real-life problems in
	This suggests better weather in Jacksonville. Comparison and sensible comment on standard deviations. For example,	B1	2.2b	context using probability distributions.
	The standard deviation for Beijing is greater than that for Jacksonville.	B1	2.2b	
	This suggests more consistent weather in Jacksonville. Student claim could be correct.	B1	2.2b	
		(4)		

(8 marks)

Notes

6a

Do not accept symmetrical with no discription of the shape.

6d

B2 for Suggests better weather in Jacksonville but less consistent.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
7a	$X \sim$ women's body temperature $X \sim N(36.73, 0.1482)$	M1	3.3	5th	
	P(X > 38.1) = 0.000186	B1	1.1b	Calculate probabilities for the standard normal distribution using a calculator.	
		(2)			
7b	Sensible reason. For example, Call the doctor as very unlikely the temperature would be so high.	B1	2.2a	8th Solve real-life problems in context using probability distributions.	
		(1)			
(3 marks)					
	Notes				