Upper and Lower Bands
John runs the 100 m in 12.5 s . The track is measured to the nearest metre and the time is measured to 1 decimal place

Find the upper and lower bounds for John's speed in m / s.

$$
\begin{aligned}
99.5 \mathrm{~m} & \leq \text { Distance }<100.5 \mathrm{~m} \\
12.45 \mathrm{~s} & \leq \text { Time }<12.55 \mathrm{~s} \\
\text { Mat Speed } & =\frac{\text { Dist }}{\text { Time }}=\frac{100.5}{12.45}=8.07 \mathrm{~m} / \mathrm{s} \\
\text { Min Speed } & =\frac{\text { Dist }}{\text { Time }}=\frac{99.5}{12.55}=7.93 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

A carpet measures $4 m$ by $3 m$ with each measurement correct to the nearest 10 cm Find lower and upper bounds fol the area of the carpet.

$$
\begin{aligned}
& 3.95_{\mathrm{m}} \leq \text { Length }<4.05 \mathrm{~m} \\
& 2.95 \mathrm{~m} \leq \text { Width }<3.05 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\text { Upper Band }=L x W & =4.05 \times 3.05 \\
& =12.35 \mathrm{~m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Lover Bound }=L \times W & =3.95 \times 2.95 \\
& =11.65 \mathrm{~m}^{2}
\end{aligned}
$$

A plants is 1.8 m long to the newest 10 cm 60 cm is cut off to the nearest 5 cm .

Find lower and upper bounds for the length of the piece that is left

$$
\begin{aligned}
& 1.75 \mathrm{~m} \leq \text { Plank }<1.85 \mathrm{~m} \\
& 57.5 \mathrm{~cm} \leq \text { Cutoff }<62.5 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
\text { Lowe bound tor remainder } & =1.75-0.625 \\
& =1.125 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\text { Upper bound for remuinler } & =\text { large }- \text { Sal } \\
& 1.85-0.575 \\
& =1.275 \mathrm{~m}
\end{aligned}
$$

Exercise

$$
\begin{aligned}
& a=1.4 \quad \text { to } 1 d p \\
& b=2.38 \text { to } 2 d p \\
& c=4.5 \text { to } 1 d p
\end{aligned}
$$

Fire bovids for

$$
\frac{c-a}{b}
$$

$$
\begin{gathered}
1.35 \leq a<1.45 \\
2.375 \leqslant b<2.385 \\
4.45 \leqslant c<4.55
\end{gathered}
$$

$$
\begin{aligned}
\text { Lower bound }=\frac{\text { Small }}{\text { large }} & =\frac{\text { Small } c-\text { large a }}{\text { large b }} \\
& =\frac{4.45-1.45}{2.385} \\
& =1.25786
\end{aligned}
$$

$$
\begin{aligned}
\text { Upper bound }=\frac{\text { large }}{\text { Small }} & =\frac{\text { large } c-\operatorname{snalla}}{\operatorname{smallb}} \\
& =\frac{4.55-1.35}{2.375} \\
& =1.347368 \quad 1.35 \quad \text { to } 2 \mathrm{dp}
\end{aligned}
$$

