Induction -Matrices
Ex 8 C

1) $\operatorname{Prove}\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)^{n}=\left(\begin{array}{cc}1 & 2 n \\ 0 & 1\end{array}\right)$

$$
n=1 \quad\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 2(1) \\
0 & 1
\end{array}\right)
$$

true for $n=1$

Assume true for $n=t s$ then

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)^{k} & =\left(\begin{array}{cc}
1 & 2 k \\
0 & 1
\end{array}\right) \\
\text { Consider }\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)^{k+1} & =\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)^{k}\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 2 k \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1+0 & 2+2 k \\
0+0 & 0+1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 2(k+1) \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Sane matrix with k replaced by $k+1$
\therefore it formula true for $n=k$ also true for $n=k+1$
Since true for $n=1$, by mathematical induction it is true for all positive integers a

$$
\begin{aligned}
& \text { 5) } M=\left(\begin{array}{ll}
2 & 5 \\
0 & 1
\end{array}\right) \quad \text { Prove } M^{n}=\left(\begin{array}{cc}
2^{n} & 5\left(2^{n}-1\right) \\
0 & 1
\end{array}\right) \\
& n=1 \quad\left(\begin{array}{ll}
2 & 5 \\
0 & 1
\end{array}\right)^{\prime}=\left(\begin{array}{cc}
2^{1} & 5\left(2^{1}-1\right) \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
2 & 5 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

True for $n=1$
Assume true for $n=k$
then $M^{k}=\left(\begin{array}{cc}2^{k} & S\left(2^{k}-1\right) \\ 0 & 1\end{array}\right)$
Consider $\underline{M}^{t+1}=M^{\pi} \underline{M}$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
2^{k} & 5\left(2^{k}-1\right) \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & 5 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2^{k} \times 2+0 & 5 \times 2^{k}+5\left(2^{k}-1\right) \\
0+0 & 0+1
\end{array}\right)
\end{aligned}
$$

$$
=\left(\begin{array}{cc}
2^{k+1} & 5\left(2^{k}+2^{k}-1\right) \\
0 & 1
\end{array}\right)
$$

$$
\begin{aligned}
& 2^{k}+2^{k} \\
= & 2\left(2^{k}\right) \\
= & 2^{k+1}
\end{aligned}
$$

$$
=\left(\begin{array}{cc}
2^{k+1} & 5\left(2^{k+1}-1\right) \\
0 & 1
\end{array}\right)
$$

sane formula with k replaced by $k+1$
\therefore If true for $n=t$ also five for $n=k+1$ etc.
b)

$$
\begin{aligned}
& \text { Find }\left(\frac{M^{n}}{}\right)^{-1} \quad M^{n}=\left(\begin{array}{cc}
2^{n} & 5\left(2^{n}-1\right) \\
0 & 1
\end{array}\right) \\
& \left(\underline{M}^{n}\right)^{-1}=\frac{1}{2^{n}}\left(\begin{array}{cc}
1 & -5\left(2^{n}-1\right) \\
0 & 2^{n}
\end{array}\right)
\end{aligned}
$$

Homework Mixed Exercise 8

