Loci in Argand Diagram
$1 f$

$$
\begin{aligned}
& z_{1}=x_{1}+i y_{1} \\
& z_{2}=x_{2}+i y_{2}
\end{aligned}
$$

then $\left|z_{2}-z_{1}\right|$ represents the distance between z_{1} and z_{2} on an Argaad diagram

Distance z_{1} to z_{2}

$$
=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Suppose $\left|z-z_{1}\right|=r$
The locus is a circle centre z_{1} radius r

Example Draw the locus of $|z+z-3 i|=4$

$$
|z-(-2+3 i)|=4
$$

Curule centre
$(-2+31)$
radius 4

Ex Draw $2 \leqslant|\geq-3-4 i|<5$

$$
2-(3+4 i)
$$

Ex $|z-(2+3 i)|=|z-(4-2 i)|$

Pespendiculas Bisector of z_{1} and z_{2}

Arguments
If $z_{1}=x_{1}+i y_{1}$
the locus of points $\arg (z-2)=,\theta$
is a half-line from, but not including Z, making an angle θ with a line from 2 , parallel to x-axis.

Example Draw locus of

5 (i) Sketch the locus $|z-(3+4 j)|=2$ on an Argand diagram.
(ii) On the same diagram, sketch the locus $\arg (z-4)=\frac{1}{2} \pi$.
(iii) Indicate clearly on your sketch the points which satisfy both

$$
|z-(3+4 \mathrm{j})|=2 \text { and } \arg (z-4)=\frac{1}{2} \pi .
$$

