Speed, Density, Pressure

$$
\begin{aligned}
\text { Speed } & =\frac{\text { Distance }}{\text { Time }} \quad \text { Density }
\end{aligned}=\frac{\text { Mall }}{\text { Vol }} \quad \text { Pressure }=\frac{\text { Force }}{\text { Area }}
$$

Problem
John travels from A to ß a distance of 80 kn at a speed of $20 \mathrm{~km} / \mathrm{h}$. He then travels from B to C a distance of 60 km in 3 hrs . He then travels from C to D in 5 hes at $15 \mathrm{hm} / \mathrm{hr}$. What was his average speed from A to D

Average Speed $=\frac{\text { Total Distance }}{\text { Tofal Time }}$

	Speed	Tine	Drsfane
A toB	$20 \mathrm{kn} / \mathrm{h}$	4 hrs	80 ke
B to C		3 hrs	60 km
C to 1	$15 \mathrm{~km} / \mathrm{m}$	5 hrs	75 kn

$$
\begin{aligned}
& \text { TOTALS } \overline{12 \mathrm{hrs}} \quad \overline{215 \mathrm{~km}} \\
& \text { Average Speak }=\frac{215}{12}=17.9 \mathrm{Kr} / \mathrm{h} \\
& \text { Density }=\frac{\text { Mass }}{V_{0}} \quad \text { Mass }=D_{\text {arsitj }} \times V_{01} \\
& V_{0} C=\frac{\text { Most }}{D_{\text {cavity }}}
\end{aligned}
$$

Typical Question
A has a density of $4 \mathrm{~s} / \mathrm{cm}^{3}$
B has a density of $7 \mathrm{~s} / \mathrm{cm}^{3}$
If $100 \mathrm{~cm}^{3}$ of A is mixal with 50 g of b to make e compound C, what is the density of compound C.

$$
\begin{aligned}
& \text { Average Deasits }=\frac{\text { Total mess }}{\text { Total Volume }} \\
& \text { A } \quad 4 \mathrm{~s} / \mathrm{ca}^{3} \quad 400 \mathrm{~g} \quad 100 \mathrm{~cm}^{3} \\
& B \quad 7 \mathrm{sla}^{3} \quad 50 \mathrm{~g} \frac{50}{7} \mathrm{ca}^{3}
\end{aligned}
$$

$$
\begin{aligned}
\text { dansity of } \angle & =\frac{450}{107.14} \\
& =4.2 \mathrm{~s} / \mathrm{cm}^{3}
\end{aligned}
$$

