Trapezium Rule for approximating area under a curve

Approximate the area under the curve between $x=1$ and $x=4$

We can do this with the sum of 3 trapezia
Area of trapezium $=\frac{1}{2}(a+b) h$

$$
\begin{aligned}
\text { Area } & \approx \frac{1}{2}\left(y_{0}+y_{1}\right) h+\frac{1}{2}\left(y_{1}+y_{2}\right) h+\frac{1}{2}\left(y_{2}+y_{3}\right) h \\
& =\frac{h}{2}\left[y_{0}+y_{1}+y_{1}+y_{2}+y_{2}+y_{3}\right] \\
& =\frac{h}{2}\left[y_{0}+2\left(y_{1}+y_{2}\right)+y_{3}\right] \\
& =\frac{1}{2}[1+2(4+9)+16] \\
& =\frac{1}{2}[43]=\frac{43}{2}=21.5
\end{aligned}
$$

In general for n strips

$$
\text { Area } \approx \frac{h}{2}\left[y_{0}+2\left(y_{1}+y_{2}+\ldots+y_{n-1}\right)+y_{n}\right]
$$

1. Here is a speed-time graph for a toy rocket.

(a) Work out an estimate for the distance the rocket travelled in the 16 seconds. Use 4 strips of equal width.

$$
\begin{align*}
\text { Area } & \approx \frac{h}{2}\left[y_{0}+2\left(y_{1}+y_{2}+y_{3}\right)+y_{4}\right] \\
& =\frac{4}{2}[0+2(9.8+13.2+9.8)+0] \tag{3}\\
& =131.2 \mathrm{~m}
\end{align*}
$$

(b) Is your answer to (a) an underestimate or an overestimate of the actual distance the rocket travelled?
Give a reason for your answer

all below the curve
2. Here is a velocity time graph for the first 60 seconds of a journey.

Calculate an estimate for the total distance travelled in the 60 seconds.

$$
\begin{aligned}
& \text { Distance } \approx \frac{h}{2}\left[y_{0}+2\left(y_{1}+y_{2}+y_{3}+y_{4}+y_{5}\right)+y_{6}\right] \\
= & \frac{10}{2}[10+2(12.4+8.4+5.6+8+10.6)+12.8] \\
= & 564 \mathrm{~m}
\end{aligned}
$$

(5)

