

Resolve \int R = 3mg + mg R = 4mg

A ladder AB, of mass m and length 4a, has one end A resting on rough horizontal ground. The other end B rests against a smooth vertical wall. A load of mass 3m is fixed on the ladder at the point C, where AC = a. The ladder is modelled as a uniform rod in a vertical plane perpendicular to the wall and the load is modelled as a particle. The ladder rests in limiting equilibrium making an angle of 30° with the wall, as shown in Figure 2.

Find the coefficient of friction between the ladder and the ground.

(10)

Moments about B

Clockwise Moment = Anti-clockwise Moment

R x 4a sin 30° = mgx 2a sin 30° + 3mg x 3a sin 30° +
$$\mu$$
R x 4a cos 30°

8 mga = mga + $\frac{9}{2}$ mga + μ 16 mga $\frac{13}{2}$
 $\frac{5 mga}{2}$ = μ x 8 mga $\frac{13}{2}$
 $\frac{5 mga}{16 \sqrt{3} mga}$ = μ
 $\mu = \frac{5}{16 \sqrt{5}}$ = 0.180