

5	$\mathrm{H}_{0}: p=0.3 ; \quad \mathrm{H}_{1}: p>0.3$ Let X represent the number of tomatoes greater than 4 cm : $\mathrm{X} \sim \mathrm{B}(40,0.3)$ $\begin{aligned} \mathrm{P}(\mathrm{X} \geq 18) & =1-\mathrm{P}(\mathrm{X} \leq 17) \\ & =0.0320 \\ 0.0320< & 0.05 \end{aligned}$ $\begin{aligned} & \mathrm{P}(\mathrm{X} \geq 18) 1-\mathrm{P}(\mathrm{X} \leq 17)=0.0320 \\ & \mathrm{P}(X \geq 17)=1-\mathrm{P}(\mathrm{X} \leq 16)=0.0633 \\ & \quad \mathrm{CR} \mathrm{X} \geq 18 \end{aligned}$ $18 \geq 18 \text { or } 18 \text { in the critical region }$ no evidence to Reject H_{0} or it is significant New fertiliser has increased the probability of a tomato being greater than 4 cm Or Dhriti's claim is true	B1 B1 B1 M1 A1 M1 B1d cao
5	B1 for correct H_{0}. must use p or pi B1 for correct H_{1} must use p and be one tail. B1 using $\mathrm{B}(40,0.3)$. This may be implied by their calculation M1 attempt to find $1-\mathrm{P}(\mathrm{X} \leq 17)$ or get a correct probability. For CR method must attempt to find $\mathrm{P}(\mathrm{X} \geq 18)$ or give the correct critical region A1 awrt 0.032 or correct CR. M1 correct statement based on their probability, H_{1} and 0.05 or a correct contextualised statement that implies that. B1 this is not a follow through .conclusion in context. Must use the words increased, tomato and some reference to size or diameter. This is dependent on them getting the previous M1 If they do a two tail test they may get B1 B0 B1 M1 A1 M1 B0 For the second M1 they must have accept Ho or it is not significant or a correct contextualised statement that implies that.	

	A1 award for either $\frac{7.5-10}{\sqrt{7.5}}$ or awrt -0.91 A1 award for either $\frac{13.5-10}{\sqrt{7.5}}$ or awrt 1.28 M1 Finding the correct area. Following on from their 7.5 and 13.5. Need to do a Prob $>0.5-$ prob <0.5 or prob $<0.5+$ prob <0.5 A1 awrt 0.718 or 0.719 only. Dependent on them getting all three method marks. No working but correct answer will gain all the marks first B1 normal second B1 p close to half, or mean \neq variance or np and nq both $>5 . T h e y ~ m a y ~ u s e ~ a ~ n u m b e r ~ b i g g e r ~ t h a n ~$ or they may work out the exact value 0.7148 using the binomial distribution. Do not allow np> $\mathbf{5}$ and npq>5	

Question Number	Scheme	Marks
2		B1 B1 B1 M1 M1 A1 A1 (7) B1 B1 B1 M1 M1 A1 A1 (Total 7)
	Notes The first 3 marks may be given if the following figures are seen in the standardisation formula :- 58 or 42, $24.36 \text { or } \sqrt{ } 24.36 \text { or } \sqrt{ } 24.4 \text { or awrt } 4.94 \text {. }$ Otherwise B1 normal B1 58 or 42 B1 24.36 M1 using 50.5 or 51.5 or 49.5 or 48.5 . ignore the direction of the inequality. M1 standardising $50.5,51,51.5,48.5,49,49.5$ and their μ and σ. They may use $\sqrt{ } 24$ or $\sqrt{ } 24.36$ or $\sqrt{ } 24.4$ or awrt 4.94 for σ or the $\sqrt{ }$ of their variance. A1 \pm 1.52. may be awarded for $\pm\left(\frac{50.5-58}{\sqrt{24.36}}\right)$ or $\pm\left(\frac{49.5-42}{\sqrt{24.36}}\right)$ o.e. A1 awrt 0.936	

Question Number	Scheme	Marks
5(a)	$X \sim \mathrm{~B}(15,0.5)$	B1 B1
(b)	$\begin{aligned} \mathrm{P}(X=8) & =\mathrm{P}(X \leq 8)-\mathrm{P}(X \leq 7) \quad \text { or }\left(\frac{15!}{8!7!}(p)^{8}(1-p)^{7}\right) \\ & =0.6964-0.5 \end{aligned}$	M1
	$=0.1964 \quad \text { awrt } 0.196$	A1 (2)
(c)	$\mathrm{P}(X \geq 4)=1-\mathrm{P}(X \leq 3)$	M1
	$=1-0.0176$	
	$=0.9824$	A1
		(2)
(d)	$\begin{aligned} & \mathrm{H}_{0}: p=0.5 \\ & \mathrm{H}_{1}: p>0.5 \end{aligned}$	B1
		B1
	$X \sim \mathrm{~B}(15,0.5)$	
	$\mathrm{P}(X \geq 13)$ $=1-\mathrm{P}(X \leq 12)$ $[\mathrm{P}(X \geq 12)=1-0.9824=0.0176]$ $=1-0.9963$ $\mathrm{P}(X \geq 13)=1-0.9963=0.0037$ \quad att $\mathrm{P}(X \geq 13)$	M1
	$=0.0037$ CR $X \geq 13$	A1
	$0.0037<0.01$ $13 \geq 13$	
	Reject H_{0} or it is significant or a correct statement in context from their values	M1
	There is sufficient evidence at the 1% significance level that the coin is biased in favour of heads	A1 (6)
	Or There is evidence that Sues belief is correct	
	Notes	
	(a) B1 for Binomial B1 for 15 and 0.5 must be in part a This need not be in the form written	
	(b) M1 attempt to find $\mathrm{P}(X=8)$ any method. Any value of p	
	Answer only full marks	
	(c) M1 for $1-\mathrm{P}(X \leq 3)$. A1 awrt 0.982	

(d) B1 for correct H_{0}. must use p or π

B1 for correct H_{1} must be one tail must use p or π
M1 attempt to find $\mathrm{P}(X \geq 13)$ correctly. E.g. $1-\mathrm{P}(X \leq 12)$
A1 correct probability or CR
To get the next 2 marks the null hypothesis must state or imply that $(p)=0.5$
M1 for correct statement based on their probability or critical region or a correct contextualised statement that implies that. not just 13 is in the critical region.

A1 This depends on their M1 being awarded for rejecting H_{0}. Conclusion in context. Must use the words biased in favour of heads or biased against tails or sues belief is correct .
NB this is a B mark on EPEN.

They may also attempt to find $\mathrm{P}(X<13)=0.9963$ and compare with 0.99

Question Number	Scheme	Marks
3 (a)	$\begin{aligned} & X \sim \mathrm{~B}(20,0.3) \\ & \mathrm{P}(X \leq 2)=0.0355 \\ & \mathrm{P}(X \geq 11)=1-0.9829=0.0171 \end{aligned}$	M1
	Critical region is $(X \leq 2) \cup(X \geq 11)$	A1 A1 (3)
(b)	Significance level $=0.0355+0.0171,=0.0526$ or 5.26%	M1 A1 (2)
(c)	Insufficient evidence to reject H_{0} Or sufficient evidence to accept H_{0} /not significant $x=3$ (or the value) is not in the critical region or $0.1071>0.025$ Do not allow inconsistent comments	B1 ft B1 ft (2)

J une 2009
6684 Statistics S2
Mark Scheme

Question Number	Scheme	Marks
Q1 (a) (b)	$[X \sim \mathrm{~B}(30,0.15)]$ $\mathrm{P}(X \leq 6),=0.8474$ awrt 0.847 $Y \sim \mathrm{~B}(60,0.15) \approx \operatorname{Po}(9)$ for using $\operatorname{Po}(9)$ $\mathrm{P}(Y \leq 12),=0.8758$ awrt 0.876 [N.B. normal approximation gives 0.897 , exact binomial gives 0.894]	M1, A1 (2) B1 M1, A1 (3)
(a) (b)	M1 for a correct probability statement $\mathrm{P}(X \leq 6)$ or $\mathrm{P}(X<7)$ or $\mathrm{P}(X=0)+\mathrm{P}(X=$ $1)+\mathrm{P}(X=2)+\mathrm{P}(X=4)+\mathrm{P}(X=5)+\mathrm{P}(X=6)$. (may be implied by long calculation) Correct answer gets M1 A1. allow 84.74\% B1 may be implied by using Po(9). Common incorrect answer which implies this is 0.9261 M1 for a correct probability statement $\mathrm{P}(X \leq 12)$ or $\mathrm{P}(X<13)$ or $\mathrm{P}(X=0)+\mathrm{P}(X=$ $1)+\ldots+\mathrm{P}(X=12)$ (may be implied by long calculation) and attempt to evaluate this probability using their Poisson distribution. Condone $\mathrm{P}(X \leq 13)=0.8758$ for B1 M1 A1 Correct answer gets B1 M1 A1 Use of normal or exact binomial get B0 M0 A0	

edexcel

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline Q4 (a) \& \begin{tabular}{l}
\begin{tabular}{lll}
\(X \sim \mathrm{~B}(20,0.3)\) \& \& \(\mathrm{P}(X \leq 2)=0.0355\) \\
\(\mathrm{P}(X \leq 9)=0.9520\) \& so \& \(\mathrm{P}(X \geq 10)=0.0480\)
\end{tabular} \\
Therefore the critical region is \(\{X \leq 2\} \cup\{X \geq 10\}\)
\[
0.0355+0.0480=0.0835 \quad \text { awrt }(0.083 \text { or } 0.084)
\] \\
11 is in the critical region there is evidence of a change/ increase in the proportion/number of customers buying single tins
\end{tabular} \& \begin{tabular}{ll}
M1 \& \\
A1 \& \\
A1 \& \\
A1A1 \& (5) \\
B1 \& (1) \\
B1ft \& \\
B1ft \& (2) \\
\& [8]
\end{tabular} \\
\hline (a)

(b)

(c) \& | M1 for $B(20,0.3)$ seen or used |
| :--- |
| $1^{\text {st }} \mathrm{A} 1$ for 0.0355 |
| $2^{\text {nd }}$ A1 for 0.048 |
| $3^{\text {rd }} \mathrm{A} 1$ for $(X) \leq 2$ or $(X)<3$ or [0,2] They get A0 if they write $\mathrm{P}(X \leq 2 / X<3)$ |
| $4^{\text {th }} \mathrm{A} 1(X) \geq 10$ or $(X)>9$ or [10,20] They get A0 if they write $\mathrm{P}(X \geq 10 / X>9)$ |
| $\mathbf{1 0} \leq X \leq 2$ etc is accepted |
| To describe the critical regions they can use any letter or no letter at all. It does not have to be X. |
| B1 correct answer only |
| $1^{\text {st }} \mathrm{B} 1$ for a correct statement about 11 and their critical region. |
| $2^{\text {nd }} \mathrm{B} 1$ for a correct comment in context consistent with their CR and the value 11 |
| Alternative solution |
| $1^{\text {st }} \mathrm{B} 0 \quad P(X \geq 11)=1-0.9829=0.0171$ since no comment about the critical region $2^{\text {nd }}$ B1 a correct contextual statement. | \&

\hline
\end{tabular}

J anuary 2010
6684 Statistics S2
Mark Scheme

Question Number	Scheme	Marks
Q1 (a) (b) (c) (d)	$\begin{equation*} X \sim B(20,0.05) \tag{2} \end{equation*}$ $\mathrm{P}(\mathrm{X}=0)=0.95^{20}=0.3584859 \ldots$ or 0.3585 using tables . $\begin{aligned} \mathrm{P}(X>4) & =1-\mathrm{P}(X \leq 4) \\ & =1-0.9974 \\ & =0.0026 \end{aligned}$ Mean $=20 \times 0.05=1$ $\text { Variance }=20 \times 0.05 \times 0.95=0.95$	B1 B1 M1 A1 (2) M1 A1 (2) B1 B1 (2) Total [8]
Q1 (a) (b) (c) (d)	Notes $\mathbf{1}^{\text {st }} \mathbf{B 1}$ for binomial $\mathbf{2}^{\text {nd }} \mathbf{B 1}$ for 20 and 0.05 o.e These must be in part (a) M1 for finding $(p)^{20} \quad 0<p<1 \quad$ this working needs to be seen if answer incorrect to gain the M1 A1 awrt 0.358 or 0.359 . M1 for writing 1 - $\mathrm{P}(X \leq 4)$ or $1-[\mathrm{P}(X=0)+\mathrm{P}(X=1)+\mathrm{P}(X=2)+\mathrm{P}(X=3)+\mathrm{P}(X=4)]$ or $1-0.9974$ or $1-0.9568$ A1 awrt 0.0026 or 2.6×10^{-3}, do not accept a fraction e.g. 26/10000 $\mathbf{1}^{\text {st }} \mathbf{B 1}$ for 1 $2^{\text {nd }} \mathbf{B 1}$ for 0.95 NB In parts b, cand d correct answers with no working gain full marks	

Question Number	Scheme	Marks
(b) (c) (d)	The set of values of the test statistic for which the null hypothesis is rejected in a hypothesis test. $\begin{aligned} & X \sim \mathrm{~B}(30,0.3) \\ & \mathrm{P}(X \leq 3)=0.0093 \\ & \mathrm{P}(X \leq 2)=0.0021 \\ & \mathrm{P}(X \geq 16)=1-0.9936=0.0064 \\ & \mathrm{P}(X \geq 17)=1-0.9979=0.0021 \end{aligned}$ Critical region is $(0 \leq) x \leq 2$ or $16 \leq x(\leq 30)$ Actual significance level $0.0021+0.0064=0.0085$ or 0.85% 15 (it) is not in the critical region not significant No significant evidence of a change in $p=0.3$ accept H_{0}, (reject H_{1}) $\mathrm{P}(x \geq 15)=0.0169$	M1 A1 A1 A1A1 (5) B1 (1) Bft 2, 1, 0
(b) (c) (d)	Notes $1^{\text {st }} \mathrm{B} 1$ for "values/ numbers" $\mathbf{2}^{\text {nd }} \mathbf{B 1}$ for "reject the null hypothesis" o.e or the test is significant M1 for using $\mathrm{B}(30,0.3)$ $1^{\text {st }}$ A1 $\mathrm{P}(x \leq 2)=0.0021$ $\mathbf{2}^{\text {nd }} \mathbf{A 1} 0.0064$ $\mathbf{3}^{\text {rd }} \mathbf{A 1}$ for $(X) \leq 2$ or $(X)<3$ They get A0 if they write $\mathbf{P}(X \leq 2 / X<3)$ $4^{\text {th }} \mathbf{A 1}(X) \geq 16$ or $(X)>15$ They get A0 if they write $\mathbf{P}(X \geq 16 X>15$ NB these are B1 B1 but mark as A1 A1 $16 \leq X \leq 2$ etc is accepted To describe the critical regions they can use any letter or no letter at all. It does not have to be X. B1 correct answer only Follow through 15 and their critical region B1 for any one of the 5 correct statements up to a maximum of B2 - B1 for any incorrect statements	

Question Number	Scheme	Marks
Q6 (a)	2 outcomes/faulty or not faulty/success or fail A constant probability Independence Fixed number of trials (fixed n)	B1 B1 (2)
(b)	$\begin{aligned} & X \sim \mathrm{~B}(50,0.25) \\ & \mathrm{P}(X \leq 6)=0.0194 \\ & \mathrm{P}(X \leq 7)=0.0453 \\ & \mathrm{P}(X \geq 18)=0.0551 \\ & \mathrm{P}(X \geq 19)=0.0287 \end{aligned}$	M1
	CR $X \leq 6$ and $X \geq$	A1 A1 (3)
(c)	$0.0194+0.0287=0.0481$	M1A1 (2)
(d)	8(It) is not in the Critical region or 8(It) is not significant or $0.0916>0.025$; There is evidence that the probability of a faulty bolt is 0.25 or the company's claim is correct.	M1; Alft (2)
(e)	$\mathrm{H}_{0}: p=0.25 \quad \mathrm{H}_{1}: p<0.25$	B1B1
	$\begin{aligned} & \mathrm{P}(X \leq 5)=0.0070 \text { or } \quad \mathrm{CR} X \leq 5 \\ & 0.007<0.01, \end{aligned}$	M1A1
	5 is in the critical region, reject H_{0}, significant. There is evidence that the probability of faulty bolts has decreased	M1 Alft 6)
		[15]
(a)	Notes	
	B1 B1 one mark for each of any of the four statements. Give first B1 if only one corre given. No context needed.	statement
(b)	M1 for writing or using $\mathrm{B}(50,0.25)$ also may be implied by both CR being correct. Co P in critical region for the method mark.	done use of
	A1 $(X) \leq 6$ o.e. $[0,6] \quad$ DO NOT accept $\mathrm{P}(X \leq 6)$ A1 $(X)>19$ o.e. $[19,50] \quad$ DO NOT accept $\mathrm{P}(X>19)$	
(c)	M1 Adding two probabilities for two tails. Both probabilities must be less than 0.5 A1 awrt 0.0481	
(d)	M1 one of the given statements followed through from their CR.	
	A1 contextual comment followed through from their CR.	
	B1 for H_{0} must use p or π (pi) B1 for H_{1} must use p or π (pi)	
(e)		
	M1 for finding or writing $\mathrm{P}(X \leq 5)$ or attempting to find a critical region or a correct critical region A1 awrt 0.007/CR $X \leq 5$	
	M1 correct statement using their Probability and 0.01 if one tail test or a correct statement using their Probability and 0.005 if two tail test.	
	A1 correct contextual statement follow through from their prob and H_{1}. Need faulty bolts and decreased.	

