2 (a)	Let <i>X</i> be the random variable the number of faulty bolts	M1	
	$P(X \le 2) = P(X \le 1) = 0.0355 = 0.0076$ or $(0.3)^2 (0.7)^{18} \frac{20!}{1000}$	A1	
	-0.0279 -0.0278 -0.0278		(2)
	- 0.0279 - 0.0278	MI A1	
(b)	1 - $P(X \le 3) = 1 - 0.1071$		(2)
	= 0.8929		
	or $1 - (0,3)^3 (0,7)^{17} \frac{20!}{20!} - (0,3)^2 (0,7)^{18} \frac{20!}{20!} - (0,3)(0,7)^{19} \frac{20!}{20!} - (0,7)^{20}$		
	$\begin{array}{c} (0.5) (0.7) \\ 17!3! \\ 18!2! \\ 18!2! \\ 19!1! \\ 19!1! \\ \end{array}$	M1A1√	A1
(c)	$\frac{10!}{(0.8929)^6}(0.1071)^4 = 0.0140$		(3)
	4!6!		
Notes:			
2. (a)	M1 Either attempting to use $P(X \le 2) - P(X \le 1)$		
	or attempt to use binomial and find $p(X = 2)$ Must have $(n)^2 (1 - n)^{18} \frac{20!}{(1 - n)^{18}}$		
	with a value of p .		
	while a value of p		
	A1 awrt 0.0278 or 0.0279.		
(b)	M1 Attempting to find 1 $P(Y < 3)$		
	$141 \text{Attempting to find } 1 = 1 (X \le 5)$		
<i>.</i>	A1 awrt 0.893		
(c)	M1 for $h(n)^6 (1-n)^4$. Then more some she for $n \in [1, \infty)^4$ is a subscription of h and h and h are the sum more some solution of h and h are the sum more solution of h are the sum more solution of h and h are the sum more solution of h and h are the sum more solution of h and h are the sum more solution of h and h are the sum more solution of h and h are the sum more solution of h and h are the sum more solution of h are the sum more soluti		
	Note for $k(p)(1-p)$. They may use any value for p and k can be any number of ${}^{n}C_{6}p^{6}(1-p)^{n-6}$		
	A1 $\sqrt{\frac{10!}{(their part b)^6}(1-their part b)^4}$ may write ¹⁰ C ₆ or ¹⁰ C ₄		
	4!6! A1 awrt 0.014		
		DIDI	
		RIBI	(2)

5	$H_0: p = 0.3; H_1: p > 0.3$	B1 B1
	Let X represent the number of tomatoes greater than 4 cm : $X \sim B(40, 0.3)$	B1
	$P(X \ge 18) = 1 - P(X \le 17)$ $P(X \ge 18) 1 - P(X \le 17) = 0.0320$ $P(X \ge 17) = 1 - P(X \le 16) = 0.0633$ $CR X \ge 18$	M1 A1
	$0.0320 < 0.05$ $18 \ge 18$ or 18 in the critical region	
	no evidence to Reject H_0 or it is significant	M1
	New fertiliser has <u>increased</u> the probability of a <u>tomato</u> being greater than 4 cm Or Dhriti's claim is true	B1d cao (7)
5	B1 for correct H_0 must use p or pi	
	B1 for correct H_1 must use p and be one tail.	
	B1 using $B(40, 0.3)$. This may be implied by their calculation	
	M1 attempt to find $1 - P(X \le 17)$ or get a correct probability. For CR method must attempt to find $P(X \ge 18)$ or give the correct critical region	
	A1 awrt 0.032 or correct CR.	
	M1 correct statement based on their probability , H_1 and 0.05 or a correct contextualised statement that implies that.	
	B1 this is not a follow through .conclusion in context. Must use the words increased, tomato and some reference to size or diameter. This is dependent on them getting the previous M1	
	If they do a <u>two tail test</u> they may get B1 B0 B1 M1 A1 M1 B0 For the second M1 they must have accept Ho or it is not significant or a correct contextualised statement that implies that.	

62 (i)	Let V represent the number of sunflower plants more than 1.5m high	
0a (1)	Let A represent the number of sunnower plants more than 1.5m high	
	$X \sim Po(10)$	
	$P(8 \le X \le 13) = P(X \le 13) - P(X \le 7)$	
	= 0.8645 - 0.2202	B1
	= 0.6443 awrt 0.644	M1
ii)	<i>X</i> ~ N(10,7.5)	
	$P(7.5 \le X \le 13.5) - P\left(\frac{7.5 - 10}{5} \le X \le \frac{13.5 - 10}{5}\right)$	A1
	$\left(\sqrt{7.5} - 1 \sqrt{7.5} - \sqrt{7.5} \right)$	B1
	$= P (-0.913 \le X \le 1.278)$	
	= 0.8997 - (1 - 0.8186)	M1 M1
	= 0.7183 awrt 0.718 or 0.719	A1 A1
b)		M1
0)	Normal approx /not Poisson	A1
	or (np = 10 npq = 7.5) mean \neq variance or	(10)
	np (= 10) and nq (= 30) both >5.	DI
	or exact binomial = 0.7148	BI B1dep
6a (i)	B1 mean = 10 May be implied in (i) or (ii)	(2)
	M1 Attempting to find $P(X \le 13) - P(X \le 7)$	
	A1 awrt 0.644	
	B1 $\sigma^2 = 7.5$ May be implied by being correct in standardised formula	
11)	M1 using 7.5 or 8.5 or 12.5 or 13.5.	
	M1 standardising using 7.5 or 8 or 8.5 or 12.5 or 13 or 13.5 and their mean and standard deviation.	

	A1 award for either $\frac{7.5-10}{\sqrt{7.5}}$ or awrt -0.91	
	A1 award for either $\frac{13.5-10}{\sqrt{7.5}}$ or awrt 1.28	
	M1 Finding the correct area. Following on from their 7.5 and 13.5. Need to do a Prob $>0.5 - \text{prob} < 0.5$ or prob $<0.5 + \text{prob} < 0.5$	
	A1 awrt 0.718 or 0.719 only. Dependent on them getting all three method marks.	
	No working but correct answer will gain all the marks	
	first B1 normal	
b)	second B1 p close to half, or mean \neq variance or np and nq both > 5.They may use a number bigger than 5 or they may work out the exact value 0.7148 using the binomial distribution.	
	Do not allow np> 5 and npq>5	

Question Number	Scheme	Marks
2	X ~B(100,0.58) Y ~ N (58, 24.36)	B1 B1 B1
	$[P(X > 50) = P(X \ge 51)]$ using 50.5 or 51.5 or 49.5 or 48.5	M1
	$= P\left(z \ge \pm \left(\frac{50.5 - 58}{\sqrt{24.36}}\right)\right) \text{ standardising 50.5, 51, 51.5, 48.5, 49, 49.5 and their } \mu \text{ and } \sigma \text{ for M1}$	M1
	$= P(z \ge -1.52)$	A1
	= 0.9357	A1
	$\frac{\text{alternative}}{X \sim B(100, 0.42)}$ Y ~ N (42, 24.36)	(7) B1 B1 B1
	$[P(X < 50) = P(X \le 49)]$ using 50.5 or 51.5 or 49.5 or 48.5	M1
	$= P\left(z \le \pm \left(\frac{49.5 - 42}{\sqrt{24.36}}\right)\right) \qquad \text{standardising 50.5, 51, 51.5, 48.5, 49, 49.5 and their } \mu \text{ and } \sigma \text{ for M1}$	M1 A1
	$= P(z \le 1.52)$	
_	= 0.9357	AI (Total 7)
	<u>Notes</u> The first 3 marks may be given if the following figures are seen in the standardisation formula :- 58 or 42, 24.36 or $\sqrt{24.36}$ or $\sqrt{24.4}$ or awrt 4.94. Otherwise B1 normal B1 58 or 42 B1 24.36 M1 using 50.5 or 51.5 or 49.5 or 48.5. ignore the direction of the inequality. M1 standardising 50.5, 51, 51.5, 48.5, 49, 49.5 and their μ and σ . They may use $\sqrt{24}$ or $\sqrt{24.36}$ or $\sqrt{24.4}$ or awrt 4.04 for σ or the address of their variance.	
	A1 ± 1.52. may be awarded for $\pm \left(\frac{50.5 - 58}{\sqrt{24.36}}\right)$ or $\pm \left(\frac{49.5 - 42}{\sqrt{24.36}}\right)$ o.e.	
	A1 awrt 0.936	

Question Number		Scheme	Ma	rks
5(a)	<i>X</i> ~ B(15, 0.5)		B1 B1	(2)
(b)	P (X = 8) = P (X ≤ 8) – P(X = 0.5)	$X \le 7$) or $\left(\frac{15!}{8!7!}(p)^8(1-p)^7\right)$	M1	(2)
	= 0.0964 - 0.3 = 0.1964	awrt 0.196	A1	(2)
(c)	$P(X \ge 4) = 1 - P(X \le 3)$		M1	
	= 1 - 0.0176			
	= 0.9824		A1	(2)
(d)	${ m H_o}: p=0.5 { m H_1}: p>0.5$		B1 B1	
	$X \sim B(15, 0.5)$			
	$P(X \ge 13) = 1 - P(X \le 12)$ = 1 - 0.9963	$[P(X \ge 12) = 1 - 0.9824 = 0.0176]$ att P(X ≥ 13) P(X ≥ 13) = 1 - 0.9963 = 0.0037	M1	
	= 0.0037	CR $X \ge 13$ awrt 0.0037/ CR $X \ge 13$	A1	
	0.0037 < 0.01	$13 \ge 13$		
	Reject H ₀ or it is significant	or a correct statement in context from their values	M1	
	There is sufficient evidence a <u>favour of heads</u>	at the 1% significance level that the coin is biased in	A1	(6)
	There is evidence that Sues b	pelief is correct		
	Notes			
	(a) B1 for Binomial B1 for 15 and 0.5 must be This need not be in the fo	e in part a rm written		
	(b) M1 attempt to find P (X A1 awrt 0.196 Answer only full marks	= 8) any method. Any value of p		
	(c) M1 for 1 - P ($X \le 3$). A1 awrt 0.982			

P	Λ	Λ	Т	

(d) B1 for correct H ₀ . must use p or π	
B1 for correct H ₁ must be one tail must use p or π	
M1 attempt to find $P(X \ge 13)$ correctly. E.g. $1 - P(X \le 12)$	
A1 correct probability or CR	
To get the next 2 marks the null hypothesis must state or imply that $(p) = 0.5$	
M1 for correct statement based on their probability or critical region or a correct contextualised statement that implies that. not just 13 is in the critical region.	
A1 This depends on their M1 being awarded for rejecting H ₀ . Conclusion in context. Must use the words biased in favour of heads or biased against tails or sues belief is correct . NB this is a B mark on EPEN.	
They may also attempt to find $P(X < 13) = 0.9963$ and compare with 0.99	

Question Number		Scheme	Mark	S
3	(a)	$X \sim B(20, 0.3)$	M1	
		P ($X \le 2$) = 0.0355		
		$P(X \ge 11) = 1 - 0.9829 = 0.0171$		
		Critical region is $(X \le 2) \cup (X \ge 11)$	A1 A1	(3)
	(b)	Significance level = 0.0355 + 0.0171, = 0.0526 or 5.26%	M1 A1	(3)
	(c)	Insufficient evidence to reject H_0 Or sufficient evidence to accept H_0 /not significant	B1 ft	
		x = 3 (or the value) is not in the critical region or 0.1071> 0.025	B1 ft	(2)
		Do not allow inconsistent comments		

Question Number	Scheme	Mark	S
5 (a)	X represents the number of defective components.		
	P (X = 1) = $(0.99)^9 (0.01) \times 10 = 0.0914$	M1A1	
(b)	P (X ≥ 2) = 1 – P(X ≤ 1) = 1 – (p) ¹⁰ – (a) = 0.0043	M1 A1 <i>√</i> A1	(2)
	$\mathbf{V} = \mathbf{P}_{\mathbf{C}}(2, 5)$	R1R1	(3)
(C)	$A \sim PO(2.3)$	M1	
	$P(1 \le X \le 4) = P(X \le 4) - P(X = 0)$ = 0.8912 - 0.0821		
	= 0.809	A1	
			(4)
	Normal distribution used. B1for mean only		(4)
	Special case for parts a and b If they use 0.1 do not treat as misread as it makes it easier. (a) M1 A0 if they have 0.3874 (b) M1 A1ft A0 (c) Could get B1 B0 M1 A0 For any other values of p which are in the table do not use misread. Check wrine the tables. There each do not (c) B1 B0 M1 A0		
	using the tables. They could get (a) M1 A0 (b) M1 A1ft A0 (c) B1 B0 M1 A0		

June 2009 6684 Statistics S2 Mark Scheme

Question Number	Scheme		Mar	ks
Q1 (a)	$[X \sim B(30, 0.15)]$			
	$P(X \le 6), = 0.8474$ awrt 0.84	⊦7	M1, A1	(2)
(b)	$Y \sim B(60, 0.15) \approx Po(9)$ for using Po	o(9)	B1	
	$P(Y \le 12), = 0.8758$ awrt 0.876	5	M1, A1	(3)
	[N.B. normal approximation gives 0.897, exact binomial gives 0.894]			[5]
(a)	M1 for a correct probability statement $P(X \le 6)$ or $P(X < 7)$ or $P(X=0) + P(X=1) + P(X=2) + P(X=4) + P(X=5) + P(X=6)$. (may be implied by long calculation Correct answer gets M1 A1. allow 84.74%	= on)		
(b)	B1 may be implied by using Po(9). Common incorrect answer which implies the 0.9261 M1 for a correct probability statement $P(X \le 12)$ or $P(X < 13)$ or $P(X=0)+P(X=1)++P(X=12)$ (may be implied by long calculation) and attempt to evaluate the probability using their Poisson distribution. Condone $P(X \le 13) = 0.8758$ for B1 M1 A1 Correct answer gets B1 M1 A1 Use of normal or exact binomial get B0 M0 A0	is is $\zeta =$ his		

edexcel

Question Number	Scheme	Mar	ks
Q4 (a)	$X \sim B(20, 0.3)$ $P(X \le 2) = 0.0355$ $P(X \le 9) = 0.9520$ so $P(X \ge 10) = 0.0480$ Therefore the critical region is $\{X \le 2\} \cup \{X \ge 10\}$	M1 A1 A1 A1A1	(5)
(b)	0.0355 + 0.0480 = 0.0835 awrt (0.083 or 0.084)	B1	(1)
(c)	11 is in the critical region there is evidence of a <u>change/ increase</u> in the <u>proportion/number</u> of <u>customers buying</u> <u>single tins</u>	B1ft B1ft	(2) [8]
(a)	M1 for B(20,0.3) seen or used 1 st A1 for 0.0355 2 nd A1 for 0.048 3 rd A1 for $(X) \le 2$ or $(X) < 3$ or $[0,2]$ They get A0 if they write $P(X \le 2/X < 3)$ 4 th A1 $(X) \ge 10$ or $(X) > 9$ or $[10,20]$ They get A0 if they write $P(X \ge 10/X > 9)$ 10 $\le X \le 2$ etc is accepted To describe the critical regions they can use any letter or no letter at all. It does not have to be <i>X</i> .		
(b) (c)	B1 correct answer only 1^{st} B1 for a correct statement about 11 and their critical region. 2^{nd} B1 for a correct comment in context consistent with their CR and the value 11 Alternative solution 1^{st} B0 $P(X \ge 11) = 1 - 0.9829 = 0.0171$ since no comment about the critical region 2^{nd} B1 is a correct context of statement		

January 2010 6684 Statistics S2 Mark Scheme

Question Number		Scheme	Mark	S
Q1	(a) (b)	$X \sim B(20,0.05)$ P(X = 0) = 0.95 ²⁰ = 0.3584859 or 0.3585 using tables .	B1 B1 M1 A1	(2) (2)
	(c)	$P(X > 4) = 1 - P(X \le 4)$ = 1-0.9974 = 0.0026	M1 A1	(2)
	(d)	Mean = $20 \times 0.05 = 1$ Variance = $20 \times 0.05 \times 0.95 = 0.95$	B1 B1 Total	(2) [8]
Q1	(a) (b)	Notes 1^{st} B1 for binomial 2^{nd} B1 for 20 and 0.05 o.eThese must be in part (a)M1 for finding $(p)^{20}$ 0gain the M1A1 awrt 0.358 or 0.359.		
	(c)	M1 for writing 1 - P($X \le 4$) or 1 - [P($X = 0$) + P($X = 1$) + P($X = 2$) + P($X = 3$) + P($X = 4$)] or 1 - 0.9974 or 1 - 0.9568 A1 awrt 0.0026 or 2.6 × 10 ⁻³ , do not accept a fraction e.g. 26/10000		
	(d)	 1st B1 for 1 2nd B1 for 0.95 NB In parts b, c and d correct answers with no working gain full marks 		

Question Number		Scheme	Marks	
Q6	(a)	The set of values of the test statistic for which the null hypothesis is rejected in a hypothesis test.	B1 B1 (2)	
	(b)	$X \sim B(30, 0.3)$	M1	
		$P(X \le 3) = 0.0093$ $P(X \le 2) = 0.0021$	A 1	
		$P(X \ge 2) = 0.0021$ $P(X \ge 16) = 1 - 0.0026 = 0.0064$	AT	
		$P(X \ge 10) = 1 - 0.9930 = 0.0004$ $P(X \ge 17) = 1 - 0.9970 = 0.0021$	۸1	
		$\Gamma(X \ge 17) = 1 = 0.9979 = 0.0021$ Critical region is $(0 \le)x \le 2$ or $16 \le x(\le 30)$	ΑΙ Δ1Δ1	
			(5)	
	(c)	Actual significance level 0.0021+0.0064=0.0085 or 0.85%	B1 (1)	
	(d)	15 (it) is not in the critical region	Bft 2, 1, 0	
		No significant evidence of a change in $p = 0.3$		
		accept H_0 , (reject H_1)		
		$P(x \ge 15) = 0.0169$	(2)	
			Total [10]	
		Notes		
Q6	(a)	 1st B1 for "values/ numbers" 2nd B1 for "reject the null hypothesis" o.e or the test is significant 		
	(b)	M1 for using B(30,0.3) $1^{st} A1 P(x \le 2) = 0.0021$ $2^{nd} A1 0.0064$		
		3rd A1 for $(X) \le 2$ or $(X) < 3$ They get A0 if they write $P(X \le 2/X < 3)$ 4th A1 $(X) \ge 16$ or $(X) > 15$ They get A0 if they write $P(X \ge 16X > 15$ NB these are B1 B1 but mark as A1 A1		
	(C)	$16 \le X \le 2$ etc is acceptedTo describe the critical regions they can use any letter or no letter at all. It does nothave to be X. B1 correct answer only		
	(d)	Follow through 15 and their critical region B1 for any one of the 5 correct statements up to a maximum of B2 – B1 for any incorrect statements		

edexcel

Question Number	Scheme	Ma	ŕks
Q2 (a)	Let <i>X</i> be the random variable the number of games Bhim loses. $X \sim B(9, 0.2)$	B1	
	$P(X \le 3) - P(X \le 2) = 0.9144 - 0.7382 \text{or} (0.2)^3 (0.8)^6 \frac{9!}{3!6!}$ = 0.1762 = -0.1762 = avert 0.1762	M1 Δ1	(3)
(1)			(0)
(b)	$P(X \le 4) = 0.9804$ awrt 0.98	MIAI	(2)
(c)	Mean = 3 variance = 2.85, $\frac{57}{20}$	B1 B1	(2)
(d)	Po(3) poisson	M1	
	$P(X > 4) = 1 - P(X \le 4)$	M1	
	= 1 - 0.8153		
	= 0.1847	A1	(3) [10]
	Notes		
(a)	B1 – writing or use of $B(9, 0.2)$		
	M1 for writing/using $P(X \le 3) - P(X \le 2)$ or $(p)^3 (1-p)^6 \frac{9!}{2!6!}$		
	A1 awrt 0.176		
(b)	M1 for writing or using $P(X \le 4)$ A1 awrt 0.98		
(c)	B1 3 B1 2.85, or exact equivalent		
(d)	M1 for using Poisson M1 for writing or using $1 - P(X \le 4)$ NB P ($X \le 4$) is 0.7254 Po(3.5) and 0.8912 Po(2. A1 awrt 0.185	5)	
	Special case :Use of Po(1.8) in (a) and (b)		
	(a) can get B1 M1 A0 – B1 if written B(9, 0.2), M1 for $\frac{e^{-1.8}1.8^3}{3!}$ or awrt to 0.161		
	If $B(9, 0.2)$ is not seen then the only mark available for using Poisson is M1.		
	(b) can get M1 A0 - M1 for writing or using $P(X \le 4)$ or may be implied by awrt 0.964		
	Use of Normal in (d) Can get M0 M1 A0 for M1 they must write 1 $P(X < 4)$ or get switt 0.197		
	$1 \subset an get two with A0 101 with they must write 1 - 1 (A \leq 4) of get awith 0.107$		

Question Number		Scheme	Marks		
Q6	(a)	2 outcomes/faulty or not faulty/success or fail A constant probability Independence	B1 B1	(2)	
	(b)	Fixed number of trials (fixed n) $X \sim B(50, 0.25)$	M1	(2)	
		$P(X \le 6) = 0.0194$ $P(X \le 7) = 0.0453$ $P(X \ge 18) = 0.0551$ $P(X \ge 19) = 0.0287$			
		CR $X \le 6$ and $X \ge 19$	A1 A1	(3)	
	(c)	0.0194 + 0.0287 = 0.0481	M1A1	(2)	
	(d)	8(It) is not in the Critical region or $8(It)$ is not significant or $0.0916 > 0.025$; There is evidence that the probability of a faulty bolt is 0.25 or the company's claim is correct.	M1; A1ft	(2)	
	(e)	H ₀ : $p = 0.25$ H ₁ : $p < 0.25$ P($X \le 5$) = 0.0070 or CR $X \le 5$ 0.007 < 0.01.	B1B1 M1A1		
		5 is in the critical region, reject H_0 , significant. There is evidence that the probability of faulty bolts has decreased	M1 A1ft	6) [15]	
	(a)	Notes B1 B1 one mark for each of any of the four statements. Give first B1 if only one correc	t statem	ent	
	(b)	M1 for writing or using B(50,0.25) also may be implied by both CR being correct. Con P in critical region for the method mark. A1 (X) ≤ 6 o.e. [0,6] DO NOT accept P(X ≤ 6) A1 (X) ≥ 10 e.g. [10,50] DO NOT accept P(X ≥ 10)	done us	e of	
	(c)	M1 Adding two probabilities for two tails. Both probabilities must be less than 0.5 A1 awrt 0.0481			
	(d)	M1 one of the given statements followed through from their CR. A1 contextual comment followed through from their CR.	. 1		
	(e)	NB A correct contextual comment <u>alone</u> followed through from their CR. will get M1 A B1 for H ₀ must use p or π (pi) B1 for H ₁ must use p or π (pi) M1 for finding or writing P($X \le 5$) or attempting to find a critical region or a correct c. A1 awrt 0.007/CR X < 5	ritical re	gion	
		M1 awit 0.007/CK $A \le 5$ M1 correct statement using their Probability and 0.01 if one tail test or a correct statement using their Probability and 0.005 if two tail test. The 0.01 or 0.005 needn't be explicitly seen but implied by correct statement compatible with their W			
		A1 correct contextual statement follow through from their prob and H_1 . Need faulty bolts and decreased.			
		NB A correct contextual statement alone followed through from their prob and H ₁ get M1 A1			