Compound Interest and Depreciation
Compound Interest

$$
\text { Amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

where $P=$ Principal invested
$r=$ rate $\%$ per annum
$n=$ number of years
Ext Find Amount when $\& 500$ is inverted for 7 years at 3% per annum

$$
A_{\text {mount }}=500 \times 1.03^{7}=4614.94
$$

Depreciation

$$
\text { Amount }=P\left(1-\frac{r}{100}\right)^{n}
$$

Ex 2 Find value of car which cost $\$ 25000$ new when it has depreciated by 15% per annum for 6 years

$$
\text { Value }=25000 \times 0.85^{6}=t 9428.74
$$

Ex I invest $\neq 250$ for 3 years receiving 5%, $6 \%, 7 \%$ in the 3 years respectively r
How much now

$$
Z 750 \times 1.05 \times 1.06 \times 1.07=\neq 893.18
$$

Harder Exa-ples

1) I invest $t 4500$ for T years and find it grows to $\$ 6766.34$. What was the annual rate of interest

$$
\begin{aligned}
4500 \times m^{7} & =6766.34 \\
m^{7} & =\frac{6766.34}{4500} \\
m & =\sqrt[2]{\frac{6766.34}{4500}}=\left(\frac{6766.34}{4500}\right)^{\frac{1}{7}} \\
m & =1.060000086
\end{aligned}
$$

Rate of interest 6% per annum
2) A car cost $\$ 24000$ new. It is worth t 8897.76 after 5 years. What is the annual depreciation percentage.

$$
\begin{aligned}
24000 \times m^{5} & =8897.76 \\
m^{5} & =\frac{8897.26}{24000} \\
m & =\left(\frac{8897.76}{24000}\right)^{\frac{6}{5}}=0.8200000644
\end{aligned}
$$

Depreciation annual rate $=18 \%$

