Angle between Vectors

In two dimensions

Cosine Rule

$$
\begin{aligned}
& \cos \theta=\frac{|\underline{a}|^{2}+|\underline{b}|^{2}-|\underline{b}-\underline{a}|^{2}}{2|\underline{a}||\underline{b}|} \\
& \cos \theta=\frac{a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}-\left(\left(b_{1}-a_{1}\right)^{2}+\left(b_{2}-a_{2}\right)^{2}\right)}{2 \mid \underline{a}(|\underline{b}|} \\
& \cos \theta=\frac{a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}-\left(b_{1}^{2}+a_{1}^{2}-2 a_{1} b_{1}+b_{2}^{2}+a_{2}^{2}-2 a_{2} b_{1}\right)}{2|\underline{a}||\underline{b}|} \\
& \cos \theta=\frac{2 a_{1} b_{1}+2 a_{2} b_{2}}{2|\underline{a}||\underline{b}|}=\frac{a_{1} b_{1}+a_{2} b_{2}}{\left|a_{a}\right||\underline{b}|}
\end{aligned}
$$

Definition The scalas product of Ewovectors

$$
\underline{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \quad a+d \quad \underline{b}=\left(\begin{array}{l}
b_{r} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

is given by

$$
\begin{aligned}
\underline{a} \cdot \underline{b} & =a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \\
\cos \theta & =\frac{a \cdot b}{|\underline{a}||b|}
\end{aligned}
$$

Aside
The scalar product (os dot product) of

$$
\underline{a} \text { and } \underline{b} \quad|\underline{a}||\underline{b}| \cos \theta
$$

where θ is ans between them

The vector product (os cross product) of a and \underline{b} is a rectos given by

$$
\underline{a} \times \underline{b}=|\underline{a}||\underline{b}| \sin \theta \underline{n}
$$

where n is a unit vector perpendicular to both a anal !
vector product not on stchabus

Ex aaple

$$
\begin{aligned}
& \underline{a}=\left(\begin{array}{c}
2 \\
3 \\
-5
\end{array}\right) \\
& \underline{b}=\left(\begin{array}{c}
4 \\
-1 \\
6
\end{array}\right)
\end{aligned}
$$

Find θ

$$
\begin{aligned}
\cos \theta & =\frac{\underline{a}-\underline{b}}{|\underline{a}||\underline{b}|} \\
\cos \theta & =\frac{\left(\begin{array}{c}
2 \\
3 \\
-5
\end{array}\right)\left(\begin{array}{c}
4 \\
-1 \\
6
\end{array}\right)}{\left|\left(\begin{array}{c}
2 \\
3 \\
-5
\end{array}\right)\right|\left(\left.\left(\begin{array}{c}
4 \\
-1 \\
6
\end{array}\right) \right\rvert\,\right.} \\
\cos \theta & =\frac{8-7-30}{2^{2}+3^{2}+(-1)^{2} \sqrt{4^{2}+(-1)^{2}+6^{2}}}=\frac{-25}{\sqrt{38} \sqrt{53}} \\
\theta & =\cos ^{-1}\left(\frac{-25}{\sqrt{38} \sqrt{53}}\right)
\end{aligned}
$$

7 The diagram shows an extension to a house. Its base and walls are rectangular and the end of its roof, EPF, is sloping, as illustrated.

(i) Write down the co-ordinates of A and F.

$$
A(4,0,0) \quad F(4,0,3)
$$

(ii) Find, using vector methods, the angles FPQ and EPF.

The owner decorates the room with two streamers which are pulled taut. One goes from O to G , the other from A to H . She says that they touch each other and that they are perpendicular to each other.
(iii) Is she right?

$$
\text { ii) } \begin{array}{rlrl}
\begin{array}{ll}
E(0,0,3) \\
P(2,1,4) \\
F(4,0,3) &
\end{array} & \overrightarrow{P Q} & =\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
Q(2,5,4) & \overrightarrow{P F} & =\left(\begin{array}{l}
2 \\
-1 \\
-1
\end{array}\right) \\
\cos (\angle F P Q)= & \frac{\left(\begin{array}{l}
0 \\
4 \\
0
\end{array}\right),\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right)}{\left|\left(\begin{array}{l}
0 \\
4 \\
0
\end{array}\right)\right|\left|\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right)\right|} & =\frac{0-4-0}{4 \sqrt{4+1+1}} \\
& =\frac{-4}{4 \sqrt{6}}
\end{array}
$$

ii)

$$
\begin{aligned}
\overrightarrow{P E}= & \left(\begin{array}{l}
-2 \\
-1 \\
-1
\end{array}\right) \quad \overrightarrow{P F}=\left(\begin{array}{l}
2 \\
-1 \\
-1
\end{array}\right) \\
\cos (\angle E P F) & =\frac{\left(\begin{array}{l}
-2 \\
-1 \\
-1
\end{array}\right) \cdot\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right)}{\left|\left(\begin{array}{l}
-2 \\
-1 \\
-1
\end{array}\right)\right|\left|\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right)\right|} \\
& =\frac{-4+1+1}{\sqrt{6} \sqrt{6}}=-\frac{2}{6} \\
\angle E P F & =\cos ^{-1}\left(-\frac{1}{3}\right)=109.5^{\circ}
\end{aligned}
$$

iii) Streamer would meet at $(2,2.5,1.5)$

$$
\begin{aligned}
& \overrightarrow{O G}=\left(\begin{array}{l}
4 \\
5 \\
3
\end{array}\right) \quad \overrightarrow{A H}=\left(\begin{array}{c}
-4 \\
5 \\
3
\end{array}\right) \\
& \begin{aligned}
\overrightarrow{O G} \cdot \overrightarrow{A H}=\left(\begin{array}{l}
4 \\
5 \\
3
\end{array}\right) \cdot\left(\begin{array}{c}
-4 \\
5 \\
3
\end{array}\right) & =-16+25+9 \\
& =18 \neq 0
\end{aligned}
\end{aligned}
$$

\therefore not 1

HwK ExllE Pages $312-313$
Q 5 i) $i i i$
Q 6
Q 8

