## Modulus Function Examples - Mark Schemes Next Page

Given that f(x) = |x| and g(x) = x + 1, sketch the graphs of the composite functions y = fg(x) and y = gf(x), indicating clearly which is which.

1 Solve the equation |2x-1| = |x|.

[4]

## Mark Schemes



| П | 1 $ 2x-1 = x $               |      |                                            | allow unsupported answers                                                        |
|---|------------------------------|------|--------------------------------------------|----------------------------------------------------------------------------------|
| П | $\Rightarrow$ $2x-1=x, x=1$  | M1A1 | www                                        | or from graph                                                                    |
|   | or $-(2x-1) = x$ , $x = 1/3$ | M1A1 | www, or $2x - 1 = -x$ must be exact for A1 | or squaring $\Rightarrow 3x^2 - 4x + 1 = 0 \text{ M1}$                           |
|   | -(2x-1)-x, x-1/3             |      | (e.g. not 0.33, but allow 0.3)             | $\Rightarrow$ $(3x-1)(x-1)=0$ M1 factorising, formula or comp. square            |
| П |                              |      | condone doing both equalities in one line  | $\Rightarrow x = 1, 1/3 \text{ A1 A1}$ allow M1 for sign errors in factorisation |
|   |                              | [4]  | e.g. $-x = 2x - 1 = x$ , etc               | -1 if more than two solutions offered, but isw inequalities                      |