Inclined Planes

Let $m=2 \mathrm{~kg}$
Let particle be on point of slipping
Let $\theta=25^{\circ}$ Find μ

On point of slipping $F=\mu R$
and

$$
\begin{aligned}
2 g \sin 25^{\circ} & =\mu 2 g \cos 25 \\
\frac{2 g \sin 25^{\circ}}{2 g \cos 25^{\circ}} & =\mu \\
\tan 25^{\circ} & =\mu
\end{aligned}
$$

Exr

$$
\begin{aligned}
& \mu=0.5 \\
& m=2 \mathrm{~kg} \\
& T=8 \mathrm{~N}
\end{aligned}
$$

Find what happens to particle
\perp to slope

$$
\begin{aligned}
& R=2 g \cos 20-8 \sin 30=14.42 \mathrm{~N} \\
& \operatorname{Max} F=\mu R=0.5 \times 14.42=7.21 \mathrm{~N} \\
& 2 g \sin 20=6.704 \mathrm{~N} \\
& T_{\cos 30}=8 \cos 30=6.928 \mathrm{~N}
\end{aligned}
$$

Force up slope from T slightly bigger than force down slope from weight
\therefore Friction would actually be in direction down slope. Only $6.928-6.704=0.224 \mathrm{~N}$ required for equilebriom. Friction can supply unto $7.21 \sim$ so particle does not move.

Follow up question. What does T need to be to mate particle accelerate up hill?

$$
\begin{aligned}
\text { Max force down slope } & =2 g \sin 20+\mu R \\
& =229.8 \sin 20+7.21 \\
& =13.91 \mathrm{~N}
\end{aligned}
$$

Parkule will accelerate up slope when $T \cos 30>13.91$

$$
T>\frac{13.91}{\cos 30}=16.06 \mathrm{~N}
$$

when $T>16.1 \mathrm{~N}$
4.

Figure 1
A particle P of mass 6 kg lies on the surface of a smooth plane. The plane is inclined at an angle of 30° to the horizontal. The particle is held in equilibrium by a force of magnitude 49 N , acting at an angle θ to the plane, as shown in Figure 1. The force acts in a vertical plane through a line of greatest slope of the plane.
(a) Show that $\cos \theta=\frac{3}{5}$.
(b) Find the normal reaction between P and the plane.

The direction of the force of magnitude 49 N is now changed. It is now applied horizontally to P so that P moves up the plane. The force again acts in a vertical plane through a line of greatest slope of the plane.
(c) Find the initial acceleration of P.
a) Parallel to slope

$$
\begin{aligned}
& 69 \sin 30=49 \cos \theta \\
& \frac{6 \times 9.8 \sin 30}{49}=\cos \theta
\end{aligned}
$$

$$
\cos \theta=\frac{3}{5}
$$

b) \perp to slope

$$
\begin{gathered}
49 \sin \theta+6 g \cos 30=R \\
49 \times \frac{4}{5}+6 g \cos 30=R \\
R=90.122 \\
R=90.1 \mathrm{~N}
\end{gathered}
$$

c)

Resultant force up slope $=$ mass $x a c c$

$$
\begin{aligned}
& 49 \cos 30-6 g \sin 30=6 a \\
& a=\frac{49 \cos 30-6 g \sin 30}{6} \\
& a=2.17 \mathrm{~ms}^{-2}
\end{aligned}
$$

