Vectors 2D SUVAT Example Question

SUVAT Equations

$$V = U + at$$

$$S = Ut + \frac{1}{2}at^{2}$$

$$S = Vt - \frac{1}{2}at^{2}$$

$$S = Vt - \frac{1}{2}at^{2}$$

$$S = U + V$$

$$S = V^{2} + 2as$$

$$V^{2} = V^{2} + 2as$$

- 6 The points A and B have position vectors $(3\mathbf{i} + 2\mathbf{j})$ metres and $(6\mathbf{i} 4\mathbf{j})$ metres respectively. The vectors \mathbf{i} and \mathbf{j} are in a horizontal plane.
 - (a) A particle moves from A to B with constant velocity $(\mathbf{i} 2\mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-1}$. Calculate the time that the particle takes to move from A to B.
 - (b) The particle then moves from B to a point C with a constant acceleration of $2\mathbf{j}$ m s⁻². It takes 4 seconds to move from B to C.
 - (i) Find the position vector of C.

(4 marks)

(ii) Find the distance AC.

(2 marks)

Mark Scheme on Next Page

		Total	9	Accept √53
	$ \mathbf{d} = \sqrt{7^2 + 2^2}$ $AC = \sqrt{53} = 7.28$	A1F	2	FT d provided two non-zero components
	$ \mathbf{d} = \sqrt{7^2 + 2^2}$			
	$\mathbf{d} = 7\mathbf{i} + 2\mathbf{j}$	MI		Attempt to find vector \overrightarrow{AC} or \overrightarrow{CA} (using candidate's C
(ii)	A(3,2) $C(10,4)$	M1		
				$(\mathbf{u} = 0 \text{ gives } 6\mathbf{i} + 12\mathbf{j})$
	$=10\mathbf{i}+4\mathbf{j}$	A1F	4	FT slip provided obtain vector expression
	+6i - 4j	M1		
				(gives 4i + 8j)
	_	A1		For correct subs
(b)(i)	$\mathbf{r} = (\mathbf{i} - 2\mathbf{j}) \times 4 + \frac{1}{2} \times 2\mathbf{j} \times 16$	M1		Full method for vector expression giving change in position
	1			
	t = 3	A1	3	CAO
				±3
	$3\mathbf{i} - 6\mathbf{j} = (\mathbf{i} - 2\mathbf{j})t$	M1		Or equivalent method for t Accept ratio of vectors leading directly to
		2.2.0		shown on a diagram
6(a)	$\mathbf{d} = 3\mathbf{i} - 6\mathbf{j}$	B1		Accept ±d or displacements of 3, 6