Ex We spin a coin we believe is biased in favour of heads. It is spun 20 tines. Carry out a Hypothesis test at the 5% significance level to conclude whether it is biased. Suppose it heads are obtained

Let x be number of heads

$$
X \sim B\left(\begin{array}{cc}
n & p \\
20, & \frac{1}{2}
\end{array}\right)
$$

$$
\begin{aligned}
& H_{0}: p=0.5 \\
& H_{1}: p>0.5
\end{aligned}
$$

where P is prob of obtaining a head on any random spin

$$
\begin{aligned}
& P(x \geqslant 14) \\
= & 1-P(x \leqslant 13) \\
= & 1-0.9423 \\
= & 0.0577>5 \%
\end{aligned}
$$

Accept Ho There is not sufflecent evidence to support the view $\operatorname{prob}($ Head $)>0.5$

Conclude the coin is fair

Ext On average 45% of driving tests result in a pass. To decide whether an examiner is too harsh or too lenient a test is set up at the 10% sig level on a sample of 20 of the examines tests. Find the critical region

Let x be number of passes
then $X \sim B(20,0.45)$

$$
\begin{aligned}
& H_{0}: p=0.45 \\
& H_{1}: p<>0.45
\end{aligned}
$$

10% sig level so 5% each end

$$
\begin{aligned}
& P(x \leq 4)=0.0189<5 \% \\
& P(x \leq 5)=0.0553>5 \%
\end{aligned}
$$

C, R. at bottonend $=\{0,1,2,3,4\}$

$$
\begin{aligned}
P(x \geqslant 12) & =1-P(x \leq 11) \\
& =1-0.8692=0.1308>5 \% \\
P(x \geqslant 13) & =1-P(x \leq 12)=0.0581>5 \% \\
& =1-0.9419=1-P(x \leq 13)=0.0215<5 \% \\
P(x \geqslant 14) & =1-1-0.9785=10 \\
& =1-1-P=10
\end{aligned}
$$

$$
x \leqslant 4 \cup x \geqslant 14
$$

4
7 A type of shampoo is known to relieve the symptoms of 75% of dogs who suffer from a particular minor allergy.
(i) 12 dogs who suffer from this allergy are selected at random. Find the probability that the number of these dogs who have their symptoms relieved is
(A) exactly 9 ,
(B) at least 9 .

A new type of shampoo has been developed to treat the allergy. A hypothesis test is to be carried out to determine whether it relieves the symptoms of a higher proportion of dogs who suffer from the allergy.
(ii) Write down suitable null and alternative hypotheses for the test. Give a reason for your choice of alternative hypothesis.

A random sample of n dogs who suffer from the allergy is selected.
(iii) (A) Given that $n=18$ and the symptoms of 16 dogs are relieved, carry out the test at the 10% significance level.
(B) Given instead that $n=50$ and the symptoms of 42 dogs are relieved, carry out the test at the 10% significance level. You may use the information that, for $X \sim \mathrm{~B}(50,0.75)$,

$$
\mathrm{P}(X=41)=0.0721, \quad \mathrm{P}(X=42)=0.0463, \quad \mathrm{P}(X \leqslant 41)=0.9084, \quad \mathrm{P}(X \leqslant 42)=0.9547 .[4]
$$

i) A)

$$
\begin{aligned}
& X \sim B\binom{n, p}{12,0.75} \\
& P(x=9)={ }^{12}\left(q 0.75^{9} \times 0.25^{3}\right. \\
&=0.2581 \\
& P(x \geqslant 9)=1-P(x \leqslant 8) \\
&=1-0.3512 \\
&=0.6488
\end{aligned}
$$

B)
ii)

$$
\begin{aligned}
& H_{0}: \rho=0.75 \\
& H_{c}: \rho>0.75
\end{aligned}
$$

$\rho=$ prob a randomly chosen dog has symptoms reliceval by new shampoos
H_{1} chosen as $p>0.75$ as improvement tested for.
iii) $\quad X \sim B(18,0.75)$

$$
\begin{aligned}
& P(x \geqslant 16) \quad 10 \% \text { sis level } \\
= & 1-P(x \leqslant 15) \\
= & 1-0.8647=0.1353>10 \%
\end{aligned}
$$

Accept H_{0}, There is not sufficient evidence to support the view the shampoo relieves a greater proportion of dogs. $A C c$ apt still $>5 \%$ of dogs relieved.

