Intro to Vectors
A vector quantity has both magnitude and direction Examples velocity, acceleration, weight, displacement

A scalas quantity has only magnitude
Examples Mass, Length
Representing Vectors
In text books and exam papers vectors are shown in bold print. When handwriting they should always be underlined

Examples

\[

\]

Resultant $\underline{a}+\underline{b}+\leq=\binom{2}{3}+\binom{4}{1}+\binom{-3}{3}=\binom{3}{7}$ This is the nose to tail rule for adding vectors

Scalar Multiples of a Vector

$$
\begin{aligned}
a & =\binom{2}{3} \\
2 \underline{a} & =2\binom{2}{3}=\binom{4}{6}
\end{aligned}
$$

Notice Ra has twice magnitude and is in the same direction as a

The magnitude of \underline{a} written as $|\underline{a}|=\sqrt{2^{2}+3^{2}}$

$$
=\sqrt{13}
$$

In general vectors do not have position although there are such things as position vectors which relate points to the origin
eg

$\underline{a}=\binom{3}{2}$ is the position vector of $A(3,2)$

Triangle Rule For Adding Vectors

If \underline{a} and \underline{b} are nose to tail $\underline{\underline{a}+\underline{b}}$ is the third side of the triangle
Parallelogram Rule for Adding Vectors

Working With Column Vectors
Let $\underline{a}=\binom{2}{3} \quad \underline{b}=\binom{4}{1} \quad \leq=\binom{-3}{3}$
Find
1)

$$
\begin{aligned}
2 \underline{a}+3 \underline{b} & =2\binom{2}{3}+3\binom{4}{1} \\
& =\binom{4}{6}+\binom{12}{3}=\binom{16}{3}
\end{aligned}
$$

2)

$$
\begin{aligned}
4 \underline{\underline{v}}-3 \underline{c} & =4\binom{2}{3}-3\binom{-3}{3} \\
& =\binom{8}{12}+\binom{9}{-4}
\end{aligned}
$$

$$
=\binom{17}{3}
$$

Exercise

$$
\underline{a}=\binom{7}{2} \quad \underline{b}=\binom{3}{0} \quad \leq=\binom{-2}{1}
$$

Find

$$
\text { i) } \quad-2 a=-2\binom{7}{2}=\binom{-14}{-4}
$$

2) $\underline{b}+2 \underline{c}=\binom{3}{0}+2\binom{-2}{1}=\binom{3}{0}+\binom{-4}{2}=\binom{-1}{2}$
3)

$$
\begin{aligned}
& \underline{a}+2 b+3 \underline{c} \\
= & \binom{7}{2}+2\binom{3}{0}+3\binom{-2}{1} \\
= & \binom{7}{2}+\binom{6}{0}+\binom{-6}{3} \quad=\binom{7}{5}
\end{aligned}
$$

Important Results

Find $\overrightarrow{A B}$

$$
\overrightarrow{A B}=-\underline{a}+\underline{b}
$$

$$
\text { Find } \overrightarrow{B A}
$$

$$
\overrightarrow{B A}=-\underline{b}+\underline{a}
$$

Let midpoint of As be M Find $\overrightarrow{O M}$

$$
\begin{aligned}
\overrightarrow{O M} & =\overrightarrow{O A}+\overrightarrow{A M} \\
& =\overrightarrow{O A}+\frac{1}{2} \overrightarrow{A B} \\
& =\underline{a}+\frac{1}{2}(-\underline{a}+\underline{b}) \\
& =\underline{a}-\frac{1}{2} a+\frac{1}{2} \underline{b} \\
& =\frac{1}{2} a+\frac{1}{2} \underline{b} \\
& \text { or } \frac{1}{2}(\underline{a}+\underline{b})
\end{aligned}
$$

