Bassic Probability
Scale

Three ways to record probability

	Fractions	Percentages	Decimals
eg	$\frac{1}{2}$	50%	0.5
$\frac{1}{4}$	25%	0.25	

You must not use ratios such as 50:50

A die (or dice) if fair can give a $1,2,3,4,5,6$ as the outcome of a roll

Prob (1) or $P(1)=\frac{1}{6}$

$$
\begin{aligned}
& P(2)=\frac{1}{6} \\
& P(3)=\frac{1}{6} \\
& P(4)=\frac{1}{6} \\
& P(5)=\frac{1}{6} \\
& P(6)=\frac{\frac{1}{6}}{1}+
\end{aligned}
$$

Mutually Exclusive events are events which

Cannot both happen at the sane time
The 'or' Rule
If two events A and B are mutually exclusive then the probability of A or B happening written as $P(A \cup B)$ is given by

$$
P(A \cup B)=P(A)+P(B)
$$

Ex $\quad P(5.6)=P(5)+P(6)$

$$
=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3}
$$

because rolling a 5 or a 6 are mutually exclusive events

Not all events are mutually exclusive
Ex Let A be the event roll an even number Let B be the event roll number >3

Then $P(A)=\frac{3}{6} \quad P(B)=\frac{3}{6}$
But $P(A, B)=\frac{4}{6}$ not $\frac{6}{6}$

$$
\{2,4,6,5\}
$$

The probabilities for A and B could not simply added together because A and B are not mutually
exclusive, 4 and 6 are in both A and B. Venn Diagram

$$
P(A, B)=\frac{4}{6}
$$

= Prob of A or B os both

$$
P(A, B)=\frac{2}{6}
$$

$=$ Prob of both A and B happening
$A \cup B$ is the union of A and B $A \cap B$ is the intersection of A and B

Expected Values
Spin a coin so times. How many Heads would you expect? Equally likely as Tails

Expected value $=50 \times \frac{1}{2}=25$
$=$ number of trials x prob of success

Roll a Dice 60 tines. Hov many Ss would you expect? 10

$$
60 \times \frac{1}{6}=10
$$

Class Experiment Spinning Coin 10 times

Trial	1	H	T
Trial	2	3	6
Trial	3	7	7
Trial	4	5	5

From this trial estimate the probability of getting 4 or less heads in 10 spins

It happened twice in 4 trials so estimate is 50%

By South Form Calculator
10 spins $P(\leq 4$ heads $)=0.377$
100 spins $P(\leq 40$ heads $)=0.028$
1000 spine $P(\leq 400$ heads $)=1.36 \times 10^{-10}$

$$
=0.000000000136
$$

1000 spins $P(\leq 450$ heads $)=0.000865$
1000 span $P(\leq 475$ header $)=0.061$
1000 spin) $P(\leq 460$ heal $)=0.00622$
1000 spoons $P(\leq 465$ heads $)=0.0145$
1000 spins $P(\leq 463$ head $)=0.0105$

1000 spam $\quad P(\leqslant 462$ hens $)=0.00883$
If you spin a coin 1000 times there is a 99% Chance the number of heads will be

$$
460 \leqslant \text { numberof heads } \leq 5 \neq 0
$$

Experimental Probability
A drawing pin is dropped on the floor 100 times. It can land like

$$
a \quad b
$$

If it lung liter Q 0 times then we estimate that the probability of landing like that is $\frac{57}{600}$ or 57%

