

cannot both happen at the same time The 'OR' Rule If two events A and B are mutually exclusive then the probability of A or B happening written as P(AuB) is given by

P(A,B) = P(A) + P(B) $P(S_{1}6) = P(5) + P(6) = \frac{1}{6} + \frac{1}{6} = \frac{1}{6} = \frac{1}{5}$ Ex because rolling a 5 or a 6 are mutually exclusive events Not all events are mutually exclusive Let A be the event roll an even number Ex Let B be the event roll number > 3 Then  $P(A) = \frac{3}{6}$   $P(B) = \frac{3}{6}$ 

> But  $P(A \cup B) = \frac{4}{5}$  not  $\frac{6}{5}$ {2,4,6,5}

The probabilities for A and B could not simply added together because A and B are not mutually exclusive. 4 and 6 are in both A and B.

Venn Diagram



$$P(A_{\cup}B) = \frac{4}{6}$$
  
= Prob of A or B or both  
$$P(A_{n}B) = \frac{2}{6}$$
  
= Prob of both A and B happening

Expected Values  
Spin a coin SD times. How many Heads  
would gov expect? Equally likely as Tails  
Expected value = 
$$50 \times \pm 2 = 25$$
  
= number of trials x prob of success  
Roll a Dice 60 times. How many  
Ss would you expect? 10  
 $60 \times \pm 5 = 10$ 

| Class Experiment | Spinning | Coin          | 10 times |
|------------------|----------|---------------|----------|
| Tust             | н        | T             |          |
|                  | 4        | <i>ъ</i><br>7 |          |
|                  | s<br>7   | r<br>r        |          |
| Treal 4          | 5        | -<br>5        |          |

From this trial estimate the probability of getting 4 or less heads in 10 spins It happened trice in 4 trials so estimate is 50%

| By   | Sixth F | form Calculator              |                          |
|------|---------|------------------------------|--------------------------|
| 10   | Spins   | P( =4 heads)                 | = 0.377                  |
| 100  | Spins   | P ( <40 heads)               | = 0.028                  |
| 1000 | spine   | P(=400 herrs)                | $= 1.36 \times 10^{-10}$ |
|      |         |                              | = 0.000000000136         |
| (000 | Spins   | $P(\leq 4.50 \text{ heads})$ | = 0,000865               |
| 1000 | Spint   | P( = 475 Leads)              | = 0.061                  |
| (000 | Spins   | P ( = 460 head)              | = 0.00622                |
| 1000 | Spung   | P( = 465 heads)              | = 0.0145                 |
| 1000 | Spins   | P( = 4-63 heads)             | = 0.0105                 |
|      |         |                              |                          |

1000 spin P(E aczhein) = 0.00883 If you spin a coin 1000 times there is a 99%. chance the number of heads will be

460 < number of heads < 540

Experimental Probability A drawing pin is dropped on the floor 100 times. It can land like A b

If it lans like a 57 times then we estimate that the probability of landing like that is 57 or 57 %.