Exercise 5B

$$|f| r = 2 \sec(\theta - \frac{\pi}{3})$$

$$r = \frac{2}{\cos(\theta - \frac{\pi}{3})}$$

-0.7

Mei Jun 06

- 1 (a) A curve has polar equation $r = a(\sqrt{2} + 2\cos\theta)$ for $-\frac{3}{4}\pi \le \theta \le \frac{3}{4}\pi$, where a is a positive constant.
 - (i) Sketch the curve.

[2]

- 1 (a) A curve has polar equation $r = ae^{-k\theta}$ for $0 \le \theta \le \pi$, where a and k are positive constants. The points A and B on the curve correspond to $\theta = 0$ and $\theta = \pi$ respectively.
 - (i) Sketch the curve. [2]

- 1 (a) A curve has cartesian equation $(x^2 + y^2)^2 = 3xy^2$.
 - (i) Show that the polar equation of the curve is $r = 3\cos\theta\sin^2\theta$.
 - (ii) Hence sketch the curve.

[3]

$$r^{2} = 31^{2} + y^{2}$$
 $x = r \cos \theta$
 $y = r \sin \theta$
 $(31^{2} + y^{2})^{2} = 331y^{2}$

$$(r^2)^2 = 3r\cos\theta r^2\sin^2\theta$$

$$\frac{1}{13} \qquad \qquad \Gamma = 3\cos\theta \sin^2\theta$$

