	5.1	F	ione	
Name:	201	UL	10413	

Venn Diagrams
Showing Probabilities
Date:
Time:
Total marks available:
Total marks achieved:

(a) State in words the relationship between two events R and S when $P(R \cap S) = 0$

The events A and B are independent with $P(A) = \frac{1}{4}$ and $P(A \cup B) = \frac{2}{3}$ $P(A) \times P(B) = P(A \cap B)$

 $\frac{2}{3} - \frac{1}{4} = \frac{5}{12}$

Find

Let P(B) = x

(b) P(B) 4××= スージ

= 5

3x = 12x - 5 5 = 6

25-2

(c) $P(A' \cap B)$

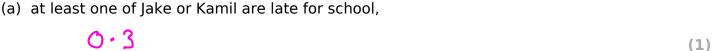
= 5

5-5= 5

(Total 9 marks)

(2)

Q2.


Jake and Kamil are sometimes late for school. The events *I* and *K* are defined as follows

J = the event that Jake is late for school

K = the event that Jake is late for school

$$P(J) = 0.25, P(J \cap K) = 0.15 \text{ and } P(J' \cap K') = 0.7$$

On a randomly selected day, find the probability that

(b) Kamil is late for school.

Given that Jake is late for school,

(c) find the probability that Kamil is late.

$$\frac{O \cdot 15}{O \cdot 25} = \frac{3}{5} \tag{3}$$

The teacher suspects that Jake being late for school and Kamil being late for school are linked in some way.

(d) Determine whether or not J and K are statistically independent.

$$P(J) \times P(K) = 0.25 \times 0.2 = 0.05 \neq 0.15 = P(J_n K)$$
So hot independent
(2)

(e) Comment on the teacher's suspicion in the light of your calculation in (d).

(Total 9 marks)

Q3.

(a) Given that P(A) = a and P(B) = b express $P(A \cup B)$ in terms of a and b when

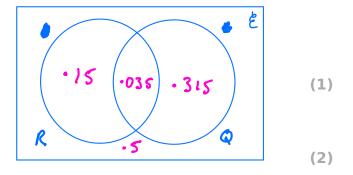
$$P(A \cup B) = a + b$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= a + b - ab$$
(2)

Two events R and Q are such that

$$P(R \cap Q') = 0.15$$
, $P(Q) = 0.35$ and $P(R|Q) = 0.1$


Find the value of

(b)
$$P(R \cup Q)$$
, = 0.5

(c)
$$P(R \cap Q)$$
, = 0.035

(d)
$$P(R)$$
. = 0.185

$$P(R \setminus Q) = \frac{P(R_n Q)}{P(Q)} \qquad 0.1 = \frac{P(R_n Q)}{Q}$$

(Total 7 marks)

(2)

Q4.

Given that

$$P(A) = 0.35$$
, $P(B) = 0.45$ and $P(A \cap B) = 0.13$

find
$$(A \cup B)$$
 = 0.67

(b)
$$P(A'|B') = \frac{.33}{.55} = \frac{3}{5}$$

The event C has P(C) = 0.20

The events A and C are mutually exclusive and the events B and C are independent.

(c) Find P(B n C) = P(B) x P(C)
=
$$.45 \times 0.2 = 0.09$$
 (2)

(d) Draw a Venn diagram to illustrate the events A, B and C and the probabilities for each region.

Tom invites Avisha to play a game with these dice.

B C .22 (13) ·23 (09) ·11

(e) Find
$$P([B \cup C]') = 0.44$$

(Total 12 marks)

(4)

(2)

Q5.

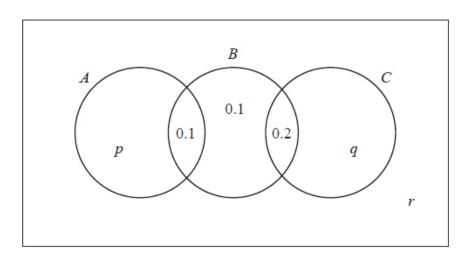


Figure 1

The Venn diagram in Figure 1 shows three events A, B and C and the probabilities associated with each region of B. The constants p, q and r each represent probabilities associated with the three separate regions outside B.

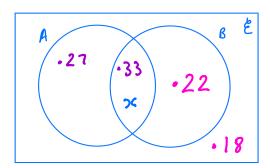
The events A and B are independent.

$$P(A) \times P(B) = P(A \cap B)$$

$$(P+0\cdot 1) \times 0\cdot 4 = 0\cdot 1$$

$$P+0\cdot 1 = \frac{0\cdot 1}{0\cdot 4} = 0\cdot 25$$
(3)

(a) Find the value of
$$p$$
.


Given that
$$P(B \mid C) = \frac{5}{11} = \frac{P(B \cap C)}{P(C)} = \frac{0.2}{9 + 0.2}$$
 $59 + 1 = 2.3$

(b) find the value of q and the value of r.

$$r = 1 - (0.4 + 0.15 + 0.24) = 0.21 \qquad r = 0.21$$

(c) Find P(A \cup C | B). = $\frac{0 \cdot 1 + 0 \cdot 2}{0 \cdot 4} = \frac{3}{4} = 0.75$ (2)

(Total 9 marks)

Q6.

For the events A and B,

 $P(A' \cap B) = 0.22$ and $P(A' \cap B') = 0.18$

(a) Find P(A).
$$P(A) = 1 - 0.18 - 0.22 = 0.6$$
 (1)

(b) Find P(A
$$\cup$$
 B). P (A \cup B) = 1 - 0.18 = 0.82

Given that $P(A \mid B) = 0.6$ = $\frac{P(A \cap B)}{P(B)}$ = $\frac{C}{x + 0.23}$

$$0.6 \times + 0.132 = 26$$

$$0.132 = 0.4 \times 2 = \frac{0.132}{0.4} = 0.33$$
(3)

(d) Determine whether or not A and B are independent.

$$P(A) \times P(B) \qquad P(A \cap B) \qquad P(A \cap B) = 0.33$$

$$0.6 \times 0.55$$

$$0.33 \qquad = 0.33$$

$$\therefore \text{ in dependent}$$

$$(Total 7 marks)$$

Q7.

A and B are two events such that

$$P(B) = \frac{1}{2} \quad P(A \mid B) = \frac{2}{5} \quad P(A \cup B) = \frac{13}{20}$$
(a) Find P(A \cap B).
$$= \frac{1}{5} \quad P(A \setminus B) = \frac{P(A \setminus B)}{P(B)} \quad P(A \setminus B) = \frac{13}{20} \quad P(A \setminus B) \times P(B) = \frac{13}{20} \quad P(B \setminus$$

(b) Draw a Venn diagram to show the events A, B and all the associated probabilities.

Find

(c) P(A)
$$= \frac{3}{20} + \frac{1}{5} = \frac{7}{20}$$

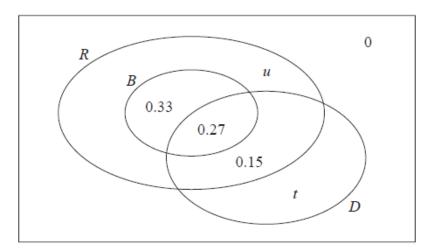
(d)
$$P(B|A) = \frac{1}{5} = \frac{1}{5} \times \frac{20}{7} = \frac{4}{7}$$
 (2)

(e)
$$P(A' \cap B)$$

$$=\frac{3}{10}\tag{1}$$

(Total 9 marks)

Q8.


The Venn diagram shows the probabilities of customer bookings at Harry's hotel.

R is the event that a customer books a room

B is the event that a customer books breakfast

D is the event that a customer books dinner

u and t are probabilities.

(a) Write down the probability that a customer books breakfast but does not book a room.

റ **(1)**

Given that the events B and D are independent

$$P(8) \times P(3) = P(B_n 3)$$

(b) find the value of t

•6
$$\times (.42+6) = 0.27$$

•42+6 = $\frac{0.27}{0.6} = 0.45$ (4)

(c) hence find the value of u

hence find the value of
$$u$$

$$U = 1 - (.33 + .27 + .15 + .03) = 0.23$$
(2)

(d) Find

(i)
$$P(D|R \cap B) = \frac{\cdot 27}{\cdot 60} = 0.45$$

(ii)
$$P(D|R \cap B')$$
 = $\frac{.15}{.37}$ = $\frac{15}{37}$ (4)

A coach load of 77 customers arrive at Harry's hotel.

Of these 77 customers

40 have booked a room and breakfast

37 have booked a room without breakfast

(e) Estimate how many of these 77 customers will book dinner.

$$40 \times 0.45 + 37 \times \frac{15}{37}$$
 (2)

$$= 18 + 15$$
 (Total for question = 13 marks)
$$= 33$$