Jan 04

4. The events A and B are such that
$$P(A) = \frac{2}{5}$$
, $P(B) = \frac{1}{2}$ and $P(A \mid B') = \frac{4}{5}$.

Independence

(i)
$$P(A \cap B')$$
, = $\frac{2}{5}$

(ii)
$$P(A \cap B)$$
,

(iii)
$$P(A \cup B)$$
, $= \frac{9}{10}$

(iv)
$$P(A \mid B)$$
.

Conditional Probability

 $P(c) \times P(D) = P(c \cap D)$

$$P(C \setminus D) = P(C \setminus D)$$

(2)

$$P(A \setminus B') = \frac{P(A \setminus B')}{P(B')}$$

$$\frac{4}{5} = \frac{P(A_{\Lambda}B')}{\frac{1}{2}}$$

$$\frac{4}{10}$$
 = $P(A_0B')$

Jan 06

6. For the events A and B,

$$P(A \cap B') = 0.32$$
, $P(A' \cap B) = 0.11$ and $P(A \cup B) = 0.65$.

- (a) Draw a Venn diagram to illustrate the complete sample space for the events A and B.
- (b) Write down the value of P(A) and the value of P(B).

(3)

(3)

(c) Find $P(A \mid B')$.

(2)

(d) Determine whether or not A and B are independent.

(3)

b)
$$f(A) = 0.54$$

 $f(B) = 0.33$

c)
$$P(A \setminus B') = \frac{P(A_n B')}{P(B')}$$

= $\frac{0.32}{0.67} = \frac{32}{67}$

d)
$$P(A) \times P(B)$$
 $P(A \cap B)$
= 0.54 × 0.33
= 0.1782 \neq 0.22
 $P(A) \times P(B) \neq P(A \cap B)$ so not independent

May 02

- 3. For the events A and B,
 - (a) explain in words the meaning of the term P(B | A),

(2)

(b) sketch a Venn diagram to illustrate the relationship P(B | A) = 0.

(2)

Three companies operate a bus service along a busy main road. Amber buses run 50% of the service and 2% of their buses are more than 5 minutes late. Blunder buses run 30% of the service and 10% of their buses are more than 5 minutes late. Clipper buses run the remainder of the service and only 1% of their buses run more than 5 minutes late.

Jean is waiting for a bus on the main road.

(c) Find the probability that the first bus to arrive is an Amber bus that is more than 5 minutes late.

Let A, B and C denote the events that Jean catches an Amber bus, a Blunder bus and a Clipper bus respectively. Let L denote the event that Jean catches a bus that is more than 5 minutes late.

(d) Draw a Venn diagram to represent the events A, B, C and L. Calculate the probabilities associated with each region and write them in the appropriate places on the Venn diagram.

(e) Find the probability that Jean catches a bus that is more than 5 minutes late.

a) P(BIA) means the probability B occurs given that A has occurred.

c) 0.5 × 0.02 = 0.01

P(Bus > 5 min late) = 0.01 + 0.03 + 0.002 0.042