Jan 04
4. The events A and B are such that $\mathrm{P}(A)=\frac{2}{5}, \mathrm{P}(B)=\frac{1}{2}$ and $\mathrm{P}\left(A \mid B^{\prime}\right)=\frac{4}{5}$.
(a) Find
(i) $\mathrm{P}\left(A \cap B^{\prime}\right),=\frac{2}{5}$
(ii) $\mathrm{P}(A \cap B),=0$
(iii) $\mathrm{P}(A \cup B),=\frac{9}{10}$
(iv) $\mathrm{P}(A \mid B) \approx 0$

Independence

$$
P(C) \times P(D)=P(C \cap D)
$$

Conditional Probability

$$
P(C \backslash D)=\frac{P(C \cap D)}{P(D)}
$$

(7)
(b) State, with a reason, whether or not A and B are
(i) mutually exclusive, Yes since $P\left(A_{n} B\right)=0$
(2)
(2)

ii) $P(A) \times P(B) \neq P(A \cap B)$

$$
=\frac{4}{10} \times \frac{1}{2} \neq 0
$$

\therefore not independent

Jan 06
6. For the events A and B,

$$
\mathrm{P}\left(A \cap B^{\prime}\right)=0.32, \mathrm{P}\left(A^{\prime} \cap B\right)=0.11 \text { and } \mathrm{P}(A \cup B)=0.65 .
$$

(a) Draw a Venn diagram to illustrate the complete sample space for the events A and B.
(b) Write down the value of $\mathrm{P}(A)$ and the value of $\mathrm{P}(B)$.
(c) Find $\mathrm{P}\left(A \mid B^{\prime}\right)$.
(d) Determine whether or not A and B are independent.

b)

$$
\begin{aligned}
& P(A)=0.54 \\
& P(B)=0.33
\end{aligned}
$$

c) $P\left(A \mid B^{\prime}\right)=\frac{P\left(A \cap B^{\prime}\right)}{P\left(B^{\prime}\right)}$

$$
=\frac{0.32}{0.67}=\frac{32}{67}
$$

d)

$$
\begin{aligned}
& P(A) \times P(B) \quad P(A, B \\
= & 0.54 \times 0.33 \quad \neq \quad 0.22 \\
= & 0.1782 \quad
\end{aligned}
$$

$P(A) \times P(B) \nsubseteq P(A \cap B)$ so not independent

May 02
3. For the events A and B,
(a) explain in words the meaning of the term $\mathrm{P}(B \mid A)$,
(b) sketch a Venn diagram to illustrate the relationship $\mathrm{P}(B \mid A)=0$.

Three companies operate a bus service along a busy main road. Amber buses run 50% of the service and 2% of their buses are more than 5 minutes late. Blunder buses run 30% of the service and 10% of their buses are more than 5 minutes late. Clipper buses run the remainder of the service and only 1% of their buses run more than 5 minutes late.

Jean is waiting for a bus on the main road.
(c) Find the probability that the first bus to arrive is an Amber bus that is more than 5 minutes late.

Let A, B and C denote the events that Jean catches an Amber bus, a Blunder bus and a Clipper bus respectively. Let L denote the event that Jean catches a bus that is more than 5 minutes late.
(d) Draw a Venn diagram to represent the events A, B, C and L. Calculate the probabilities associated with each region and write them in the appropriate places on the Venn diagram.
(e) Find the probability that Jean catches a bus that is more than 5 minutes late.
(2)
a) $P(B \backslash A)$ means the probability B occurs given that A has occurred.
b)

c)
0.5
$\times 0.02=$ 0.01
d)

e) $\begin{aligned} \quad P(\text { Bus }>5 \mathrm{~min} \text { late }) & =0.01+0.03+0.002 \\ & =0.042\end{aligned}$

